Activation of p21-CDC42/Rac-Activated Kinases by CD28 Signaling: p21-Activated Kinase (PAK) and MEK Kinase 1 (MEKK1) May Mediate the Interplay Between CD3 and CD28 Signals

Shuji Kaga, Scott Ragg, Kem A. Rogers and Atsuo Ochi

*J Immunol* 1998; 160:4182-4189; 
http://www.jimmunol.org/content/160/9/4182

References

This article cites 44 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/160/9/4182.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Activation of p21-CDC42/Rac-Activated Kinases by CD28 Signaling: p21-Activated Kinase (PAK) and MEK Kinase 1 (MEKK1) May Mediate the Interplay Between CD3 and CD28 Signals

Shuji Kaga,*† Scott Ragg,*† Kem A. Rogers,‡ and Atsuo Ochi‡*†

CD28, a T cell costimulatory receptor, provides a signal that induces both optimal proliferation and the production of IL-2 by TCR-activated T cells. We show that the stimulation of CD28 leads to the activation of p21-activated kinase and MEK kinase 1. The same pathway was also stimulated in T cells treated with the cell-permeable ceramide analogue, C2-ceramide. The combined stimulation of either CD3 and CD28 or CD3 concurrently with C2-ceramide largely enhanced the activity of p21-activated kinase and MEK kinase 1. Therefore the Rac1/CDC42-coupled pathway(s) is a candidate that transduces and facilitates cross-talk between the CD28 costimulatory signal and the TCR signal. The Journal of Immunology, 1998, 160: 4182–4189.

A
g-specific activation of T cells is regulated by multiple surface receptors. Most importantly, T cells recognize peptide Ag presented on APCs with the specific TCR αβ or γδ heterodimer (1). By noncovalently associating with TCR, the CD3 complex transduces the Ag signal to intracellular signaling pathways (2). When T cells are activated, they initiate cell cycle progression and produce cytokines (e.g., IL-2) (3). Accumulating evidence indicates that T cell activation is aborted by TCR signaling alone, and that additional costimulatory signals are required to complement the TCR signal and activate the T cell. CD28 is a 44-kDa homodimeric glycoprotein constitutively expressed on most mature T cells (4). Intensive research in the last several years has characterized this molecule as the receptor that generates costimulatory signals in T cells. Cross-linking CD28 with specific Abs does not trigger T cell activation; however, if CD28 is synergized with TCR stimulation, cell proliferation and cytokine production are greatly induced.

Despite a powerful influence on T cell activation, the mechanism of signaling by CD28 remains uncertain. One candidate that may possibly be involved in directing the CD28 costimulatory signal is phosphatidylinositol-3-phosphate kinase (PI3K). The p85α subunit of PI3K can associate with the cytoplasmic domain of CD28 via a pYMNM motif, and CD28 ligation may activate this lipid kinase (5–7). In addition to PI3K, an adapter protein, growth factor receptor-bound protein 2, and a T cell-specific protein tyrosine kinase, inducible T cell kinase, may also bind to the same PYMNM motif. A few reports, however, dispute the importance of PI3K for CD28 costimulatory signaling (8–10). The activation of p21unos in a CD28-stimulated human T cell line was reported, and a growth factor receptor-bound protein 2-complexed nucleotide exchange factor, Sos, may trigger this response (11). However, this action was observed only as a result of stimulation with CD28-specific Ab. The physiologic ligand of CD28, B7-1, did not cause p21unos activation. Therefore, the issue of stoichiometry appeared to limit further study of the proximal events that trigger CD28 costimulatory signaling. Two reports, including our own, have shown that CD28 stimulation couples to the sphingomyelin-ceramide pathway (12, 13), which overlaps with the signaling pathways triggered by the TNF-αR, IL-1R, and Fas (14). Since all of these receptors, under particular circumstances, generate a costimulatory signal in T cells, and since the cell-permeable ceramide analogues and sphingomyelinase can directly generate costimulatory signals in T cells (13, 15), we have proposed that sphingomyelin-ceramide turnover-mediated signaling is a major pathway of CD28 costimulatory signaling. Ceramide alone activates c-Jun NH2-terminal kinase (JNK) (16, 17), while a concomitant stimulation of TCR and CD28 results in an increased activation of this kinase (18). Activation of Rac1 and p38-K was also observed in a human T cell line treated with C6-ceramide (a cell-permeable ceramide analogue), although exactly how the ceramide pathway reacts with these molecules was not demonstrated (19). JNK is a c-Jun transcription factor/activation kinase that is stimulated by various stress signals; it is also an anchor kinase of the Rac1/CDC42 small G protein/p21-activated kinase (PAK)/MEK kinase (MEKK)/stress-activated protein kinase/extracellular signal-related protein kinase (SEK) pathway (20). The stimulation of MEKK1, another kinase of this pathway, was also observed in a TCR- and CD28-costimulated T cell line (21). Furthermore, the induced deficiency of SEK1 in mice inhibited CD28-mediated T cell costimulation (22). Do these data indicate that the JNK pathway is a potent costimulatory pathway?

In this report, we show that CD28 stimulation causes an activation of the signaling cascade that includes PAK and MEKK1.
The treatment of T cells with C2-ceramide mimics CD28 stimulation by PAK and MEKK1 activation. CD3 stimulation also activates this kinase cascade; however, coligation of CD3 and CD28 greatly increases the activation of the PAK cascade, while the same stimulation promotes c-Jun phosphorylation in the nucleus. C2-ceramide also augments the activation of the PAK and MEKK1 cascades after CD3 stimulation. These data demonstrate that CD28 costimulation involves coupling of the sphingomyelin/ceramide turnover-mediated signaling and the PAK/MEKK1/JNK pathways. The data also suggest that the TCR signal and the CD28 signal merge primarily at the level of a cytoskeletal signaling process which is mediated by Rho family G proteins.

Materials and Methods
Abs, proteins, and chemicals
The Abs used in this work were as follows: anti-human CD3 (UCHT1) from PharMingen (San Diego, CA); anti-human CD28 (YT9H13.2) from Serotec (Oxford, U.K.); and anti-PAK (C-19 and N-20), anti-MEKK1 (43Y and C-20), anti-c-Jun (KM-1), FITC-goat (F(ab')2), anti-rabbit IgG, and horseradish peroxidase-conjugated anti-mouse IgG from Santa Cruz Biotechnology (Santa Cruz, CA). The Abs to mouse CD3 (2C11) and mouse CD28 (37.51) were purified from culture supernatants. Glutathione S-transferase (GST)-IeBx antisense and kinase-deficient MEKK1, MEKK1(1–301), were both purchased from Santa Cruz Biotechnology. Myelin basic protein (MBP) was obtained from Sigma (St. Louis, MO). Wortmannin, C2-ceramide, and dehydro-C2-ceramide were obtained from Biomol (Plymouth Meeting, PA). Immunizing peptides (blocking peptides) for PAK-specific Abs were purchased from Santa Cruz Biotechnology.

Cell culture, cell stimulation, and immunoprecipitation
Jurkat and EL4 cells were obtained from the American Type Culture Collection (Rockville, MD). Cells were grown in RPMI 1640 with 5% FCS and 40 μg/ml gentamicin. Jurkat cells or EL4 cells were either stimulated with anti-CD3 (at a final concentration of 10 μg/ml) and/or anti-CD28 (at a final concentration of 15 μg/ml) without cross-linking by secondary Abs or treated with C2-ceramide or dehydro-C2-ceramide in FCS-free RPMI 1640 as indicated. Following stimulation, cells were lysed in RIPA buffer (20 mM Tris (pH 7.4), 1% Triton X-100, 0.1% SDS, 150 mM NaCl, 0.5% sodium deoxycholate, 2 mM EGTA, 1 mM sodium molybdate, 1 mM sodium orthovanadate, and 20 μg/ml aprotinin). After preclearing with protein A/G agrose (Santa Cruz Biotechnology), immunoprecipitates were prepared using both Abs to PAK or MEKK1 and protein A/G agrose.

To demonstrate the specificity of immunoprecipitation, Ab was neutralized by incubating with an excess amount of immunizing peptide for 2 h at room temperature before use.

Protein kinase assays
Immune complexes were washed four times in RIPA buffer and twice in kinase buffer (50 mM HEPES (pH 7.5), 10 mM NaCl, 10 mM MgCl2, and 1 mM DTT). Autokinase reactions for PAK and MEKK1 were performed in kinase buffer containing 2 μM ATP (15 μCi/μM). For PAK activity toward MBP, kinase-deficient MEKK1 (MEKK1(1–301)), or GST-IeB, immunoprecipitates were incubated in kinase buffer containing 10 μg of MBP and 5 μM ATP (4 μCi/μM), 1 μg of MEKK1(1–301) and 5 μM ATP (4 μCi/μM), or 1 μg of GST-IeB and 5 μM ATP (4 μCi/μM), respectively. After a 15-min incubation at 30°C, the reactions were stopped by the addition of denaturing SDS-PAGE buffer. 32P-labeled proteins were resolved by SDS-PAGE and analyzed using a Molecular Imager (Bio-Rad, Hercules, CA).

Fluorescence microscopy study of phosphorylated c-Jun
To measure the phosphorylation of c-Jun in vivo, EL4 cells were cultured overnight on 22-mm square microscope cover slips. Cells on the cover slips were stimulated for 30 min with Abs (2 μg/ml for each Ab), washed, permeabilized, and fixed using standard methods (23). Cells were stained with mouse anti-phosphorylated c-Jun mAb (IgG1) at a 1:20 dilution followed by FITC-goat (F(ab')2), anti-mouse IgG (1:20) as described previously (24).

Samples were examined using a Zeiss Axioscope microscope (Stuttgart, Germany) equipped with epifluorescence filters.

Results
CD28 stimulation activates PAK and MEKK1
Our recent experiments have demonstrated that CD28 stimulates focal adhesion, such as molecular changes in T cells, which is apparently controlled by the Rho family G proteins CDC42 and Rac1 (24). The data indicated the possibility that the CD28 signal activates a Ser/Thr kinase, PAK, which is known to associate with and be activated by GTP-bound Rac1 or CDC42. Therefore, we extended our investigation to measure the activity of PAK in CD28-stimulated T cells. Both an autokinase assay (Fig. 1A) and an in vitro kinase assay against MBP (Fig. 1B) clearly demonstrated a transient activation of PAK in anti-CD28-treated human T cell line Jurkat cells. The immunizing peptide successfully inhibited that immunoprecipitation of PAK.

In budding yeast, a PAK homologue, Ste20, mediates the mating signal as it activates Ste11 (a MEKK homologue) by phosphorylation (25). In a manner similar to yeast, PAK may activate MEKK1 in CD28-stimulated Jurkat cells. We used this N-terminal domain (1–301), which does not contain the kinase domain, as the substrate for PAK. In vitro kinase assays showed that the activation of PAK following anti-CD28 stimulation leads to the phosphorylation of the N-terminal domain of MEKK1 but not IeBo used as the control substrate (Fig. 1, C and D). Thus MEKK1 appeared to be a substrate of PAK in CD28-stimulated T cells. Similar results were obtained using the EL4 mouse T cell line (data not shown).

Recently, MEKK1 has been cloned in its full length as a 195-kDa protein (26). In determining if CD28 stimulation activates MEKK1, the Jurkat cell was not suitable, since it expresses MEKK2 and not MEKK1; only anti-MEKK1 Ab is currently available for immunoprecipitation assays. Therefore, we used EL4 cells for all MEKK1 assays. When we assayed the expression of MEKK1, both anti-MEKK1(43Y) Ab to 1–301 amino acids of originally cloned MEKK1 and anti-MEKK1(1–22) Ab to C-terminal 22 amino acids immunoprecipitated a ~190-kDa protein (Fig. 1E). This protein band demonstrated autophosphorylation activity, and the stimulation of these cells with anti-CD28 clearly increased this autophosphorylation activity (Fig. 1F).

The cell-permeable ceramide analogue can activate PAK
Next, we hypothesized that the signaling pathway stimulated by ceramide overlaps with that activated by PAK. In vitro kinase assays were used to test the effect of a cell-permeable ceramide analogue on PAK activation. C2-ceramide activated PAK, while dehydro-C2-ceramide, a biologically inactive form of C2-ceramide (27), did not (Fig. 2, A and B). The activation of PAK occurred in a dose-dependent fashion (Fig. 2B). The activity of PAK induced by C2-ceramide was confirmed using MEKK1(1–301) as the substrate (Fig. 2C).

The CD3 signal synergizes with the CD28 signal or C2-ceramide to augment the activation of the PAK and MEKK1
Given that JNK activity is under the control of PAK/MEKK1, CD28 and CD3 signals may merge at the level of PAK/MEKK1 activation. To investigate this possibility, PAK and MEKK1 activity were studied in Jurkat or EL4 cells stimulated with anti-CD3 plus anti-CD28. Interestingly, CD3 activation significantly stimulated PAK; however, when cells were stimulated with both CD28 and CD3, the activity of PAK was dramatically increased (Fig. 3, A and B). We then examined whether MEKK1 activity parallels that of PAK (Fig. 3, C and D). The increase in phosphorylation resulting from autokinase activity was lower than that observed in the PAK assay, but CD3 plus CD28-stimulated cells evidently had
FIGURE 1. Stimulation of CD28 activates PAK and MEKK1. A shows the autokinase assay of PAK. Jurkat cells were stimulated with anti-CD28 Ab (YTH913.2, rat IgG) or normal rat IgG (NRIg) for 2, 5, or 10 min as indicated above each lane. PAK activity was measured using an autokinase reaction. In lanes 5 and 6, PAK was immunoprecipitated in the presence of the immunizing peptide. The control indicates nonstimulated cells. The amounts of immunoprecipitated PAK were determined by Western blotting (shown in the bottom). B shows the kinase activity of PAK toward MBP. Jurkat cells were stimulated with anti-CD28 Ab (YTH913.2) for 2, 5, or 10 min as indicated above each lane. PAK activity was measured using MBP as the substrate. In lanes 5 and 6, PAK was immunoprecipitated in the presence of the immunizing peptide. The control indicates nonstimulated cells. The 18-kDa bands indicate phosphorylated MBP. C indicates the kinase activity of PAK against MEKK1(1–301). Jurkat cells were stimulated with anti-CD28 Ab (YTH913.2) for 2, 5, or 10 min as indicated above each lane. PAK activity was measured using kinase-deficient MEKK1 (MEKK1(1–301)) as the substrate. In lanes 5 and 6, PAK was immunoprecipitated in the presence of the immunizing peptide. The 50-kDa bands indicate phosphorylated MEKK1(1–301). The control indicates nonstimulated cells. D, PAK phosphorylates MEKK1(1–301) but not IκBα. Jurkat cells were stimulated with anti-CD28 Ab (YTH913.2) or normal rat IgG (NRIg) for the periods indicated above. In lanes 1, 2, 5, and 6, MEKK1(1–301) was used as the substrate. The GST fusion protein of full length IκBα (70 kDa) was used as the substrate in lanes 3 and 4. E, Anti-MEKK1 detects an ~190-kDa protein in the EL4 cell extract. Immunoprecipitates were made using normal rabbit IgG (lane 1), anti-MEKK1(43Y) (lane 2), or anti-MEKK1(C-20) (lane 3) from EL4 cell lysates. MEKK1 was visualized by Western blotting using anti-MEKK1(43Y) as the primary Ab. F. Stimulation of CD28 activates MEKK1. EL4 cells were stimulated with anti-CD28 Ab (37.51) for 2, 5, or 10 min as indicated above each lane. Immune complex autokinase assays were performed using anti-MEKK1(43Y) Ab. In lanes 5 and 6, immunoprecipitates were prepared using normal rabbit IgG. The control indicates nonstimulated cells. Amounts of immunoprecipitated MEKK1 were determined by Western blotting (shown in the bottom).
transcription factor c-Jun at Ser63 and Ser72 (reviewed in Ref. 28). Cytoplasm, JNK translocates to the nucleus to phosphorylate the phosphorylation of nuclear c-Jun increases upon CD3 and CD28 stimulation.

The G protein cycle controls bud site selection; BUD1 controls CDC42, which in turn probably controls Rho. In mammalian cells, a similar G protein cascade consisting of Ras, CDC42, Rac, and Rho appears to exist. According to the results of experiments in which activated forms of each G protein have been microinjected into fibroblasts, CDC42, Rac, and Rho behave as a linear cascade, with CDC42 activating Rac, and Rac, in turn, activating Rho (30). Ras may be upstream of these Rho family G proteins, since the negative, dominant form of Rac blocked both the induction of membrane ruffling caused by activated Ras (31) and the transforming activity of oncogenic Ras (32). Different extracellular signals are known to activate the G protein cascade at different points. For instance, in fibroblasts, platelet-derived growth factor activates Ras, followed by Rac and Rho (23, 33, 34), while other signals, such as lysophosphatidic acid, activate Rho only (31). It is probable that the same G protein cascade is conserved in T cells and integrates various activation signals. TCR stimulation also activates Ras (35); therefore, it is likely that TCR stimulates those G proteins that are regulated by Ras, namely CDC42, Rac, and Rho. Strikingly, we have also observed that CD28 stimulation initiates GDP/GTP Rac1 turnover and that combined activation of CD28 and CD3 increased this turnover by 50% (H. Hanawa and A. Ochi, manuscript in preparation). Our results indicate that CD3 or CD28 stimulation alone activates CDC42 and/or Rac; however, coligation of CD3 with CD28 greatly potentiates the activation of these G proteins. Furthermore, we found that one of the kinases downstream of Rho is activated by CD3 (data not shown). This finding seems to support the role of the Ras/CDC42/Rac/Rho pathway in T cell activation.

Is MEKK1 the kinase that is downstream of PAK?

Our data indicated that immunoprecipitated PAK derived from CD28-stimulated T cells phosphorylates the N-terminal domain (1–301) of MEKK1. These data seem to contradict a recent publication which denies the direct kinase activity of PAK against MEKK1 (36). In that study, cloned PAK3 gene is expressed in insect cells and protein is affinity-purified using GST-CDC42Hs-conjugated beads. The study also described a negative result on the interaction among low.m.w. G proteins, arranged in a cascade, is involved in cell surface receptor-mediated cell activation (29). In budding yeast, the BUD1

The phosphorylation of nuclear c-Jun increases upon CD3 and CD28 stimulation in vivo

The results described above strongly suggested that the CD3 signal and the CD28 signal merge at PAK/MEKK1, possibly resulting in the augmentation of JNK activity. Indeed, previous data showed that CD28 and CD3 in synergism stimulate JNK to a significant level as assayed by measuring the kinase activity in vitro. Thus, both signals were necessary to cause optimal T cell activation (Ref. 18 and our unpublished observations). Following activation in the cytoplasm, JNK translocates to the nucleus to phosphorylate the transcription factor c-Jun at Ser63 and Ser72 (reviewed in Ref. 28).

To investigate definitively if the concomitant stimulation of CD3 and CD28 does indeed increase the active form of the c-Jun transcription factor in cells, as was expected from the increased activity of JNK, we examined the level of c-Jun phosphorylation in cells after CD3 stimulation with or without CD28 costimulation. EL4 cells were stimulated with anti-CD3 and/or anti-CD28, and the phosphorylated c-Jun was detected using a mAb against the phosphorylated c-Jun (reviewed in Ref. 28). To determine whether C2-ceramide mimics the costimulatory effect of CD28 stimulation by augmenting PAK activity, as shown in Figure 3, E and F, C2-ceramide greatly increased the activation of PAK when combined with CD3 stimulation.

The phosphorylation of nuclear c-Jun increases upon CD3 and CD28 stimulation in vivo

The results described above strongly suggested that the CD3 signal and the CD28 signal merge at PAK/MEKK1, possibly resulting in the augmentation of JNK activity. Indeed, previous data showed that CD28 and CD3 in synergism stimulate JNK to a significant level as assayed by measuring the kinase activity in vitro. Thus, both signals were necessary to cause optimal T cell activation (Ref. 18 and our unpublished observations). Following activation in the cytoplasm, JNK translocates to the nucleus to phosphorylate the transcription factor c-Jun at Ser63 and Ser72 (reviewed in Ref. 28).

To investigate definitively if the concomitant stimulation of CD3 and CD28 does indeed increase the active form of the c-Jun transcription factor in cells, as was expected from the increased activity of JNK, we examined the level of c-Jun phosphorylation in cells after CD3 stimulation with or without CD28 costimulation. EL4 cells were stimulated with anti-CD3 and/or anti-CD28, and the phosphorylated c-Jun was detected using a mAb against the phosphorylated c-Jun (reviewed in Ref. 28). To determine whether C2-ceramide mimics the costimulatory effect of CD28 stimulation by augmenting PAK activity, as shown in Figure 3, E and F, C2-ceramide greatly increased the activation of PAK when combined with CD3 stimulation.
kinase reaction against MEKK1 by the active form of PAK. However, it should be noted that the experimental system used by those researchers was largely different from ours; the following are likely the reasons for the discrepancy: First, PAK activity is expected to be induced after contact with GTP-bound CDC42 or Rac1. Unless the interaction of PAK with GTP-bound CDC42 is allowed prior to kinase reaction, insect cell-expressed PAK may not be able to phosphorylate MEKK1. Second, it is our experience that PAK kinase assay against MBP often has high basal activity, while the activity against MEKK1(1–301) is largely dependent upon stimulation by CD28. Thus, PAK activity against MEKK1 may be regulated in more specific manner than that against MBP by external stimulation. These two points may explain the failure to phosphorylate MEKK1 with PAK purified with GST-CDC42Hs. Finally, it is possible that the kinase reaction of PAK may require a protein that promotes binding with MEKK1, and that the PAK-specific Ab could allow us to immunoprecipitate PAK complexed with such a “docking protein”. Another possibility may be that our PAK precipitate is contaminated with a kinase that intermediates between PAK and MEKK1. Fanger reported that MEKK1, like PAK, directly interacted with Rac/CDC42 to involve the SEK/JNK pathway of activation in COS cells (37). The data indicated that PAK and MEKK1 locate in parallel as the elements of Rac/CDC42-coupled signaling. We also realized that MEKK1(1–301) used as the substrate for PAK does not include the phosphorylation sites required for MEKK1 activation (36).
Therefore, it is possible that phosphorylation by PAK does not activate MEKK1 but may regulate the caspase association and the cleavage of MEKK1 as reported recently (38). Further studies will be required to elucidate the possibility of involvement of other kinases and docking proteins between the PAK and MEKK1 cascade.

How does ceramide mediate the CD28 costimulatory signal?

We have demonstrated that cell-permeable ceramide augments PAK action in CD3-stimulated T cells. Although this result may imply that ceramide could be a mediator of the CD28 costimulatory signal, ceramide is also known as a mediator of apoptosis (39, 40). Therefore, a molecular mechanism that allows ceramide to cause programmed cell death or proliferation must exist. Accordingly, at this point, three G protein-coupled mitogen-activated protein kinase cascades that result in the activation of extracellular signal-related kinase (ERK), JNK, or p38-K have been identified in mammalian cells (reviewed in Ref. 20). Accordingly, it is possible that the multiplicity of mitogen-activated protein kinase cascades contributes, through the integration of each signal, to the determination of death or proliferation in response to various stimuli. Indeed, the activation of JNK and p38-K and the concurrent inhibition of ERK appear to be critical in the induction of apoptosis in PC12 cells after nerve growth factor withdrawal (41). Alternatively, the duration of activation of each kinase may be critical in determining the outcome; for example, the transient activation of ERK by epidermal growth factor induces cell proliferation, whereas the sustained activation of ERK by nerve growth factor induces cell differentiation in PC12 cells (42). In the case of CD28 signal transduction, the activation of ERK by CD3 and the concomitant and transient activation of JNK by the PAK cascade through the effect of ceramide may be essential to the costimulatory activity.

How does PI3K fit into the G protein cascade model?

We attempted to verify the importance of PI3K in PAK-mediated CD28 costimulatory signaling using the specific inhibitor wortmannin. In our study, wortmannin inhibited the activation of PAK following CD28, CD3, or CD3 plus CD28 stimulation (Fig. 5). Presumably PI3K activation by Ras upon CD3 stimulation was blocked by wortmannin (43). This result suggests that wortmannin inhibits PI3K activation downstream of both the CD3 and CD28 pathways. Therefore, since PI3K is involved in CD28 and CD3 signal transduction, wortmannin is not suitable for dissecting the role of PI3K in the CD28 costimulatory signaling pathway.

CD28 and TCR signaling pathways are regulated by Rho family small G proteins and associating kinases

The CD28 costimulatory signaling pathway that interplays with TCR signaling may be summarized as shown in Figure 6. TCR stimulation causes the activation of Ras, and then Ras induces the activation of the Raf/MEK/ERK module. Ras activation may induce CDC42 and/or Rac activation through the PI3K pathway. Phosphatidylinositol 3,4,5-triphosphate delivered by PI3K causes dissociation of the Rho GDP-dissociation inhibitor from the GDP-binding form of CDC42 and Rac (44), following which CDC42 and Rac become accessible to the GDP/GTP dissociation stimulator. CDC28 stimulation activates PI3K and sphingomyelinase, releasing the metabolites phosphatidylinositol 3,4,5-triphosphate and ceramide which activate CDC42 and Rac. In addition, ceramide may activate PAK directly. CD3 and CD28 costimulation likely result in the synergistic activation of CDC42 and/or Rac, followed by the activation of the PAK/MEKK1/SEK/JNK module. Furthermore, the activation of Rac may result in a cross-talk to the Rho-coupled signaling pathway that may also transduce the signaling of another membrane receptor.
Our model suggests that many different signals are integrated through low m.w. G proteins. Our findings document the importance of PAK/MEKK1 in a costimulatory signal transduction pathway and should lead to additional studies that will clarify the function of low m.w. G proteins in cell proliferation, anergy induction, and apoptosis in T cells.

Acknowledgments

We thank J. Allison and J. Bluestone for the gift of the B cell hybridoma lines for anti-CD28 and anti-CD3 and A. Abo and A. Hall for valuable discussions. M. Cameron, H. Chou, and B. Sogbein are also acknowledged for technical assistance.

References


