Involvement of C-Abl Tyrosine Kinase in Lipopolysaccharide-Induced Macrophage Activation

Quan Le, Rene Daniel, Siu-Wah Chung, Anthony D. Kang, Toby K. Eisenstein, Barnet M. Sultzer, Henry Simpkins and Peter M. C. Wong

J Immunol 1998; 160:3330-3336;
http://www.jimmunol.org/content/160/7/3330

Why The JI?

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References
This article cites 49 articles, 26 of which you can access for free at:
http://www.jimmunol.org/content/160/7/3330.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Involvement of C-Abl Tyrosine Kinase in Lipopolysaccharide-Induced Macrophage Activation

Quan Le, Rene Daniel, Siu-Wah Chung, Anthony D. Kang, Toby K. Eisenstein, Barnet M. Sultzer, Henry Simpkins, and Peter M. C. Wong

LPS endotoxin-induced macrophage activation is recognized to be important in both nonspecific immunity and endotoxin-induced sepsis when excessive macrophage stimulation occurs. In this study, we showed that reduction of c-Abl in macrophages prevented LPS-induced growth arrest, nitric oxide production and TNF-α secretion by ANA-1 macrophages. These cells continued to grow but later underwent apoptosis. Reduction of c-Abl in these cells led to reduced c-Abl kinase activity associated with Ran, which recently has been shown to be an LPS-responsive gene product. Our data suggest that c-Abl tyrosine kinase is one of the intermediates downstream of the initial signal transduction event related to activation of macrophages by LPS. The Journal of Immunology, 1998, 160: 3330–3336.

Materials and Methods

Cell culture and viral infection

The ANA-1 immortalized murine macrophage cell line was established previously by infecting normal bone marrow cells of C57BL/6 mice with the murine recombinant J2 retrovirus containing the v-myc and v-raf oncogenes (22), kindly provided by Dr. Luigi Varesio (National Cancer Institute, Frederick, MD). The cells were cultured in DMEM (Mediatech, Washington, DC) supplemented with 10% heat-inactivated FBS (HyClone, Logan, UT), 2 mM L-glutamine, and 10 μg/ml gentamicin (D10F). A total of 5 × 10^4 cells/ml were prepared the day before each experiment, and the cells were incubated at 37°C in a humidified incubator with an atmospheric content of 5% CO₂.

The Δd retrovirus vector was constructed previously (23) and contains a 0.7-kb c-abl antisense sequence and a neomycin resistance (neo) gene. The N2 retrovirus carries only a neo gene (24). The GP/E virus-producing cells were transfected with plasmid DNA by calcium-phosphate coprecipitation (25), cultured with D10F in 100-mm tissue culture dishes to near confluence, and replaced with 5 ml of fresh D10F. Twelve hours later, the medium was harvested and used as viral supernatant. Aliquots of the viral supernatant were stored at −70°C until use. To determine viral titer, 100,000 NIH 3T3 cells were seeded onto each 60-mm dish. After 12 h, 0.5 ml of viral supernatant with appropriate viral titer and 10^5 cells/ml were prepared the day before each experiment, and the cells were incubated at 37°C in a humidified incubator with an atmospheric content of 5% CO₂.

For infection, 1 million ANA-1 cells were incubated with 1 ml of Δd or N2 viral supernatants for 24 h in the presence of 5 μg/ml of polybrene. At the end of infection, the spent supernatants were replaced with fresh medium containing 1 mg/ml of G418. Two weeks later, G418-resistant colonies were recorded. The titer of undiluted Δd virus stock was 10^7 G418^10^5 col/ml.

For infection, 1 million ANA-1 cells were incubated with 1 ml of Δd or N2 viral supernatants for 24 h in the presence of 5 μg/ml of polybrene. At the end of infection, the spent supernatants were replaced with 5 ml of fresh D10F containing 1 mg/ml of G418. After 2 wk, the resistant cells were then expanded and passaged in D10F without G418.

Received for publication June 24, 1997. Accepted for publication November 26, 1997.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by National Institutes of Health Grant RO1AI39159 to P.M.C.W.

2 Address correspondence and reprint requests to Dr. Peter M. C. Wong, The Fels Institute, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140.

3 Abbreviations used in this paper: NO, nitric oxide; PTK, protein tyrosine kinases; NOS, nitric oxide synthase; iNOS, inducible nitric oxide synthase; NMMA, N\(^\text{G}\)-monomethyl-L-arginine; D10F, DMEM supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, and 10 μg/ml gentamicin.

4 R. Daniel, P. M. C. Wong, A. D. Kang, E. Moran, M. S. Moore, and S. W. Chung. Specific association of type I c-abl with Ran/TC4 GTPase and type IV c-abl with cdc2 and p53. Submitted for publication.
Growth curve analysis

In all, 500,000 αD- N2-transduced, or untransduced ANA-1 cells were plated in 1 ml of D10F in each well of a 24-well plate and cultured for 24, 48, and 72 h. For each time point, three independent samples were set up. Cell viability was evaluated by trypan blue (Sigma, St. Louis, MO) exclusion.

LPS stimulation

Because both endotoxin and protein-free LPS are found to be potent activators of the mouse immune system by acting as cell mitogens and polyclonal activators of B cells (26, 27), the LPS used in this study was purified. Two of the most extensively used protocols for extracting the endotoxin from Gram-negative bacteria are the Boivin method and the Westphal method (28). Protein-free LPS purified from Salmonella typhimurium by the phenol-water extraction method was used in all experiments described in this study (20, 29, 30).

A total of 500,000 αD- N2-transduced, or untransduced ANA-1 cells were plated in 1 ml of D10F in each well of a 24-well plate in the presence of 10 μg/ml of protein-free purified LPS, and the cells were cultured for 24, 48, 72, and 96 h. The cell number in each of three replicates at each time point was recorded and the cell viability was evaluated by trypan blue staining. Cell-free supernatants from these samples were also collected for NO and TNF-α assay, and the cells were harvested for DNA fragmentation analysis.

To examine the effects of iNOS (inducible nitric oxide synthase) inhibitor on NO production of αD- or N2-transduced or untransduced ANA-1 cells stimulated with 10 μg/ml of LPS, we added NMMA (Nω-monomethyl-L-arginine; Calbiochem-Behring, La Jolla, CA; catalog no. 475856) into the culture medium at a concentration of 0.2 mM (31, 32). The cell culture was incubated for 72 h. NO production of cell-free supernatants was then measured.

Immunoprecipitation and Western blot analysis

Ten million αD- N2-transduced, or untransduced ANA-1 cells were cultured in 20 ml of D10F for 48 h with or without 10 μg/ml of LPS. Five million cells from each sample were harvested, washed twice with PBS, and lysed in 500 μl of lysis buffer containing 10 mM Tris-HCl (pH 8.0), 130 mM NaCl, 1% Triton X-100, 5 mM EDTA, protease inhibitors (10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 mM aminomethyl benzene sulfonfonyl fluoride), and phosphatase inhibitor (400 μg/ml sodium vanadate). After 30 min of incubation on ice, the lysates were centrifuged at 16,000 × g for 15 min at 4°C. The supernatants were collected and transferred into siliconized tubes, and the monoclonal anti-Abl Ab 8E9 (a gift from Dr. Jean Y. J. Wang, University of California at San Diego) was added to a final concentration of 20 μg/ml. Immune complexes were allowed to form during an overnight rotation at 4°C. Afterward, 30 μl of protein G-agarose (Boehringer Mannheim, Indianapolis, IN) was added, and the tubes were rocked at 4°C for 2 h. The Ag-Ab-protein G-agarose complexes were washed three times with lysis buffer. The pellets were resuspended with 40 μl of 2× sample buffer containing 100 mM Tris-HCl (pH 6.8), 40% (v/v) glycerol, 2% SDS, 0.02% bromophenol blue, and 2% 2-ME, boiled for 5 min, and spun at 16,000 × g for 5 min at 4°C. The supernatants were then collected and separated by SDS-PAGE. Biotinylated protein standards (Bio-Rad, Richmond, CA) for SDS-PAGE were used as m.w. markers. Electrophoresis was conducted in the presence of Tris-glycine buffer with a Tall Mighty Small vertical slab gel unit (Hoefer, San Francisco, CA). After electrophoresis, the gel was soaked in Tris-glycine transfer buffer containing 20% (v/v) methanol for 30 min, and the proteins were transferred to Immobilon-P Transfer Membrane (Millipore, Bedford, MA). The membrane was blocked with blocking solution (Life Technologies, Grand Island, NY) for 1 h at room temperature, and blotted with 3 μg/ml of 8E9 Ab in blocking solution for another 1 h at room temperature. The membrane was then washed twice for 5 min each time with a washing solution consisting of 50 mM Tris-HCl (pH 7.5), 200 mM NaCl, and 0.05% Tween 20. Next, it was incubated with 1:2000 biotinylated goat anti-mouse IgG in blocking solution (Life Technologies) for 30 min at room temperature, washed twice with the Tris-buffered saline with Tween 20 washing solution, incubated further with 1:2500 streptavidin-alkaline phosphatase conjugate (Life Technologies) for 30 min at room temperature, and followed by another four washes. The proteins were visualized by using a chemiluminescent substrate (Boehringer Mannheim) and the gel exposed to an x-ray film. In some experiments, separate aliquots of protein lysates were stained with Coomassie brilliant blue after electrophoresis. Protein lysates of 2 × 105 cells per sample were separated on a 7% SDS-PAGE. The gel was stained with 0.05% Coomassie brilliant blue (Boehringer Mannheim) for 30 min at room temperature. It was then washed in 5% ethanol/7% acetic acid for 4 h at room temperature.

For iNOS Western blot analysis, the αD- N2-transduced, or untransduced ANA-1 cells were incubated for 72 h with or without 10 μg/ml of LPS. Cell lysates of 1 × 106 cells were resolved on a 7% SDS-PAGE, transferred to Immobilon-P Transfer Membrane, and blotted with 1 μg/ml of affinity-purified rabbit polyclonal iNOS Ab (Santa Cruz Biotechnology, Santa Cruz, CA, catalog no. SC-650) (33–36). Next, the membrane was incubated with 1:5000 anti-rabbit IgG-alkaline phosphatase conjugate (Santa Cruz Biotechnology, catalog no. SC-207). The 130-kDa iNOS protein bands (34, 37) were visualized by using a chemiluminescence system (Boehringer Mannheim).

Measurement of NO

The cellfree supernatants were collected at the end of cell culture. The concentration of nitrite (NO2−) was measured by colorimetric Griess reaction and used as an indicator of NO production (38). In a 96-well plate, 100-μl aliquots of culture supernatants or standard solutions (NaNO2; Sigma) were mixed with equal volumes of the Griess reagent (2% phosphoric acid, 1% sulfanilamide, 0.1% naphthylethylene-diamine dihydrochloride; Sigma). Color change began almost immediately. Ten minutes after initiation of reaction at room temperature, absorbance was measured using an automated microplate reader (BioTek Instruments) at 550 nm. The concentration of NO2− was calculated and quantitated by comparing it with the color developed when NaNO2 standards were used.

Determination of TNF-α concentration

Cells were incubated with or without LPS for 72 h and supernatants were collected for TNF-α assay. The TNF-α concentrations were determined immediately by using an Enzyme Immunoassay kit (Immunotech, Marseille, France; catalog no. 1121) (39, 40).

DNA fragmentation analysis

Genomic DNA of various cells, with or without LPS stimulation, were extracted by the phenol/chloroform method (23). A total of 5 μg of genomic DNA of each sample was then run on a 2% agarose gel at 40 V for 2 h.

C-AbI kinase assay

Cells (2 × 107 per sample) were stimulated with 5 μg/ml of LPS for 48 h. Then, cells were lysed in a lysis buffer containing 10 mM Tris-Cl, pH 7.6, 100 mM NaCl, and 0.05% Tween 20. The cell lysates were assayed by the C-Abl kinase assay, which uses anti-c-AbI antisense sequence and a neo gene. ANA-1 cells were infected with αD virus or N2 control virus and selected by 1 mg/ml of G418. Transduced or untransduced ANA-1 cells were plated into each well of a 24-well plate at 5 × 103/ml. The number of viable cells was enumerated every 24 h. The results were mean ± SD in a representative experiment performed in triplicate. Four separate experiments were performed, and similar results were obtained. ANA-1, untransduced ANA-1 cells; A/αD, αD-transduced ANA-1 cells; A/N2, N2-transduced ANA-1 cells.

FIGURE 1. Growth curves of αD- or N2-transduced and untransduced ANA-1 cells. The αD retrovirus vector carries anti-c-AbI antisense sequence and a neo gene. ANA-1 cells were infected with αD virus or N2 control virus and selected by 1 mg/ml of G418. Transduced or untransduced ANA-1 cells were plated into each well of a 24-well plate at 5 × 103/ml. The number of viable cells was enumerated every 24 h. The results were mean ± SD in a representative experiment performed in triplicate. Four separate experiments were performed, and similar results were obtained. ANA-1, untransduced ANA-1 cells; A/αD, αD-transduced ANA-1 cells; A/N2, N2-transduced ANA-1 cells.
5 mM EDTA, 130 mM NaCl, 1% Triton X-100, and protease inhibitors. Lysates of 1 \times 10^7 cells per sample were immunoprecipitated with anti-Abl Ab (8E9) and incubated with protein G-agarose. The complexes were collected, washed, and boiled. The supernatant was resolved on a 7% SDS-PAGE, transferred to an Immobilon-P membrane, and blotted with 8E9 Ab. The c-Abl bands were visualized by using a chemiluminescence system. Marker, high m.w. marker. B. The protein lysates of 2 \times 10^6 cells of ANA-1, A/\alpha D, or A/N2 were separated on a 7% SDS-PAGE. The gel was then stained with Coomassie blue staining solution.

FIGURE 2. Reduction of c-Abl level in \(\alpha D \)-transduced ANA-1 cells. A. Cell lysates of 5 \times 10^6 cells of \(\alpha D \)- or N2-transduced and untransduced ANA-1 cells were immunoprecipitated with anti-Abl Ab (8E9) and incubated with protein G-agarose. The complexes were collected, washed, and boiled. The supernatant was resolved on a 7% SDS-PAGE, transferred to an Immobilon-P membrane, and blotted with 8E9 Ab. The c-Abl bands were visualized by using a chemiluminescence system. Marker, high m.w. marker. B. The protein lysates of 2 \times 10^6 cells of ANA-1, A/\alpha D, or A/N2 were separated on a 7% SDS-PAGE. The gel was then stained with Coomassie blue staining solution.

FIGURE 3. Growth of \(\alpha D \)- or N2-transduced and untransduced ANA-1 cells with LPS stimulation. A. \(\alpha D \)- or N2-transduced and untransduced ANA-1 cells were plated into a 24-well plate at 5 \times 10^5/ml, and incubated with or without 10 \mu g/ml of LPS. The number of viable cells was recorded every 24 h. The results are expressed as mean \pm SD of a representative experiment performed in triplicate. The results of four individual repeated experiments were similar. B. Growth curves of \(\alpha D \)- or N2-transduced and untransduced ANA-1 cells with LPS stimulation. The cells were set up and stimulated with LPS as in A, and then the number of viable cells was counted every 24 h. The results are expressed as mean \pm SD of a representative experiment performed in triplicate. The results of four individual repeated experiments were similar. After LPS stimulation, the proliferation of N2-transduced and untransduced ANA-1 cells was inhibited. \(\alpha D \)-transduced ANA-1 cells continued to proliferate when incubated with LPS for 24 and 48 h, and then cell growth was inhibited when incubated for 72 and 96 h. The growth rate of \(\alpha D \)-transduced cells with LPS stimulation is significantly higher than that of N2-transduced or untransduced ANA-1 cells with LPS stimulation.

Results

ANA-1 cells expressing reduced c-Abl have the same growth rate as controls

ANA-1 macrophages were transduced with the \(\alpha D \) vector capable of expressing anti-c-abl antisense RNA (23) and neomycin resistance. Positively transduced cells were then selected by virtue of G418 resistance, pooled, and expanded. As a control, pooled ANA-1 cells positively transduced with the N2 vector carrying the neo' gene (24) were also similarly established. To determine whether there was any difference between these cell lines in terms of cell proliferation, we did growth curve analysis on the parental ANA-1 cells, \(\alpha D \)-transduced ANA-1 (A/\alpha D) cells, and N2-transduced ANA-1 (A/N2) cells. Figure 1 shows that no significant difference between these lines could be observed.

To verify that A/\alpha D cells, as opposed to control cells, express reduced c-Abl, we performed immunoprecipitation and a Western blot on lysates of these cell lines using the monoclonal anti-c-Abl 8E9 Ab. Lysates from 5 million cells of each line were immunoprecipitated with 8E9, followed by SDS-PAGE and Western blot analysis using 8E9 also as the blotting Ab. The intensity of the p140 c-Abl band in A/\alpha D was five times lower than that of parental ANA-1 cells and A/N2 cells, as measured by densitometer (Fig. 2A). The total amount of protein used per sample was the same (Fig. 2B).

A similar level of c-Abl reduction was observed in A/\alpha D cells stimulated with LPS compared with that of LPS-treated control.
cells (data not shown). The P140 c-Abl level was reduced in αD- or N2-transduced ANA-1 cells after 48 h of LPS stimulation. The amount of c-Abl in each band on the Western blot gel was established by densitometry analysis by the MacBAS computer program. The relative intensity ratios of c-Abl bands of the untransduced, αD-, or N2-transduced ANA-1 cells were 0.87, 0.32, and 1, respectively. These data indicate that A/αD cells expressed reduced c-abl, but their growth rate appeared to be the same as that of the controls.

LPS-stimulated A/αD cells were not growth inhibited and did not have enhanced NO and TNF-α production

ANA-1 macrophages are responsive to LPS (41). To examine the effect of reduced c-Abl in these cells, we studied αD-, N2-transduced, and untransduced ANA-1 cells after LPS stimulation. ANA-1 and A/N2 cells responded to LPS by undergoing growth inhibition (Fig. 3), which was dose and time dependent. This growth inhibition could be observed at 1 μg/ml, 10 μg/ml, and 100 μg/ml of LPS and at 24 to 96 h after stimulation. By contrast, A/αD cells did not undergo growth inhibition when stimulated with LPS. Instead, they continued to proliferate within the first 48 h (Fig. 3).

Related to the growth inhibition after LPS stimulation was the activation of ANA-1 cells. This is shown by the ability of these LPS-stimulated macrophages to produce NO, which is controlled by nitric oxide synthase (NOS) (42). Measurement of NO production in cell culture supernatants was determined by the Griess reaction (38). Without LPS stimulation, NO production by all

FIGURE 4. NO and TNF-α production of αD- or N2-transduced ANA-1 cells, with or without LPS stimulation. A, NO production. αD- or N2-transduced and untransduced ANA-1 cells were plated into a 24-well plate at 5 × 10⁵/ml, and incubated with or without 10 μg/ml of LPS for 48, 72, and 96 h. The culture supernatants were collected at the end of the incubation. The concentrations of nitrite (NO₂⁻) were used as an indicator of NO production and were measured by the Griess reaction, with sodium nitrite as the standard. Data presented are the means ± SD of two determinations from one representative experiment of three. B, Western blot of iNOS gene expression. αD- or N2-transduced and untransduced ANA-1 cells were incubated for 72 h with or without 10 μg/ml of LPS, and lysates of 1 × 10⁶ cells were resolved on a 7% SDS-PAGE, and blotted with iNOS Ab. The 130-kDa iNOS protein bands were visualized by using a chemiluminescence system. Data are from one of two similar experiments. C, Influence of iNOS inhibitor (NMMA) on NO production. Cells were incubated for 72 h with or without 10 μg/ml of LPS in the absence or presence of 0.2 mM of NMMA. The NO production was measured as in A. Data presented are the means ± SD of two determinations from one representative experiment of three. D, TNF-α secretion. Cells were incubated for 72 h with or without LPS as in A. The TNF-α concentrations of culture supernatants were determined with an Enzyme Immunoblot kit. Results are expressed in pg/ml of TNF-α secreted and are from one representative experiment of three.
ANA-1 cells, transduced or untransduced, was minimal (Fig. 4A). After LPS stimulation, NO production was obvious in parental ANA-1 cells and A/N2 cells but not in A/aD cells (Fig. 4A).

Next, we examined expression of other genes associated with macrophage activation. By Western blot analysis, we showed that iNOS protein production was significantly increased in LPS-stimulated parental ANA-1 cells and A/N2 cells but not in A/aD cells (Fig. 4B). The NOS inhibitor, NMMA, significantly inhibited NO production by LPS-stimulated parental ANA-1 cells and A/N2 cells (Fig. 4C). We further showed that TNF-α was secreted by LPS-stimulated parental ANA-1 cells and A/N2 cells, but not A/aD cells (Fig. 4D). Thus, multiple LPS-induced gene expression patterns were affected as a result of reduced c-Abl in stimulated macrophages.

LPS-stimulated A/aD cells proliferated initially and then underwent apoptosis.

As indicated in Figure 3, after LPS stimulation the A/aD cells but not the control cells continued to grow. However, upon longer incubation, LPS-stimulated A/aD had more pronounced cell death compared with A/N2 or parental ANA-1 cells. At 96 h after LPS stimulation, the percentage of viability of A/aD cells was 40%, whereas for A/N2 and ANA-1 cells, it remained higher than 70% (Fig. 5), even though the growth of these cells was inhibited by LPS (Fig. 3B).

Decreased viability of A/aD cells after LPS stimulation suggests induction of apoptosis. To examine this, we extracted genomic DNA from these cells and fractionated them in a 2% agarose gel, followed by staining the gel with ethidium bromide. As indicated in Figure 6, a significant amount of DNA fragmentation occurred in A/aD cells stimulated with LPS for 96 h but not 72 h, whereas neither A/N2 nor parental ANA-1 cells revealed DNA fragmentation.

Reduced c-Abl kinase activity after LPS stimulation in aD-transduced ANA-1 cells and GG2EE cells.

Recently, we have shown that type I c-Abl kinase activity is enhanced in lymphoid cells as a result of LPS stimulation (Ref. 21). Based on the results shown in Figure 2, in which the c-Abl level in ANA-1 cells is reduced, A/D-transduced and LPS-stimulated ANA-1 cells should have reduced c-Abl kinase activity. We therefore proceeded to perform a kinase assay after immunoprecipitation with anti-c-Abl Ab. Indeed, Figure 7 shows that enhancement of c-Abl kinase activity was absent in A/D-transduced and LPS-stimulated ANA-1 cells. We further showed an absence of upregulation of c-Abl kinase activity in LPS-stimulated GG2EE macrophage cells (Fig. 7), which were derived from LPS-hyporesponsive C3H/HeJ mice (43) and contain a mutated LPS-responsive gene encoding for Ran/TC4 (20). Reduced c-Abl kinase activity was observed in A/D-transduced ANA-1 cells and GG2EE cells.
activity in GG2EE cells is significant because we have also shown recently that Ran physically associates with type I c-abl, accounting for c-Abl-enhanced kinase activity. This reduced activity may be related to reduced complex formation. Indeed, when we performed immunoprecipitation using anti-Ran Ab followed by measuring the kinase activity of c-Abl, we noticed a decline in the level of Ran/type I c-Abl complex, as well as the activity of c-Abl kinase in GG2EE cells stimulated with LPS compared with the controls (data not shown).

Discussion

In this study, we have shown that reduction of c-Abl in ANA-1 macrophages resulted in no change in cell growth but impairment in their activation by LPS to produce NO. These data suggest that c-Abl is involved in signal transduction pathways for LPS-mediated macrophage activation. The molecular mechanisms of intracellular signaling have been shown to involve certain PTK (12–19). Thus, the proliferation of c-Abl may affect iNOS expression via a mechanism not related to LPS-activated macrophages. The molecular mechanisms of intracellular signaling have been shown to involve certain PTK (12–19). Thus, the proliferation of c-Abl may affect iNOS expression via a mechanism not related to LPS-activated macrophages.

ANO-1 macrophages responded to LPS by undergoing growth arrest, followed by activation in terms of NO production, iNOS expression, and TNF production (Figs. 3 and 4). By contrast, ANA-1 cells expressing a reduced level of c-Abl continued to proliferate in the presence of LPS, but at 72 h after stimulation they started to undergo apoptosis (Figs. 5 and 6). NO has been shown to have an antiproliferative effect (44). Thus, the proliferation of ANA-1/oD cells may be a direct consequence of the reduced NO production. Our data also suggest the following. 1) LPS stimulated ANA-1 macrophages to initiate signaling events for NO production. Once triggered by LPS, the process appears to be irreversible. 2) c-abl participates as an intermediate in this signaling pathway but is downstream from the initial event of LPS stimulation, as reduction of c-Abl did not inhibit the process initiated by LPS. 3) As a result of blocking the activation of ANA-1/oD cells, an alternative signaling pathway for apoptosis takes place. The mechanism of c-Abl involvement in NO, iNOS, and TNF production by LPS-activated macrophages is unclear at present. One possibility is that c-Abl may affect iNOS expression via a mechanism not related to LPS at all. We consider this possibility unlikely because we have recently shown an LPS-dependent complex formation between type I c-Abl and Ran/TC4. The letter has been shown to be an LPS-responsive gene (20). We have recently shown that type IV c-abl is inhibitory to apoptosis, and type I c-abl is necessary for LPS-induced differentiation in lymphoid cells (21). Involvement of type IV c-abl is probably achieved by indirect activation of p53, which is known to play an important role in the induction of apoptosis. In this study, induction of the apoptosis pathway in ANA-1/oD macrophages may or may not be directly associated with the inhibition of LPS-mediated activation as a result of reduced c-abl. Reduction of c-abl was achieved by antisense RNA, and the vector design of the target c-abl sequence does not discriminate between the predominant type I or type IV c-abl isofoms. Clearly, antisense treatment resulted in only a fivefold reduction of c-Abl. The level of c-Abl, however, appears to be sensitive in regulating various aspects of cell growth (45–48). For example, overexpression of c-Abl has been shown to induce growth arrest (49, 50), while reduction of c-Abl leads to deregulation in cell cycle (51) and apoptosis (21, 52).

References

