This information is current as of April 8, 2017.

133 (1)

J Immunol 1984; 133:1-535; ;
http://www.jimmunol.org/content/133/1.citation

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Contents

COMMUNICATIONS

R. C. Giles, C. K. Hurley, and J. D. Capra 1 Primary Structural Variation among Serologically Indistinguishable DS Antigens: The MB3-Bearing Molecule in DR4 Cells Differs from the MB3-Bearing Molecule in DR5 Cells

E. S. Kleinerman and R. B. Hermann 4 Tumorcidal Activity of Human Monocytes: Evidence for Cytolytic Function Distinct from that of NK Cells

Z. K. Ballas 7 The Use of 5-Azacytidine to Establish Constitutive Interleukin 2-Producing Clones of the EL4 Thymoma

CELLULAR IMMUNOLOGY

J. A. Harp, B. S. Davis, and S. J. Ewald 10 Inhibition of T Cell Responses to Alloantigens and Polyclonal Mitogens by Ly-5 Antisera

L. L. Perry, I. R. Williams, and S. DiRusso 16 Suppressor T Cell Recognition of Major and Minor Histocompatibility Alloantigens: Selected Suppression of MHC-Directed Responses by Minor Alloantigen T

M. J. Stukart, J. Boes, and C. J. M. Melief 24 Recognition of H2-Kb Mutant Target Cells by Moloney Virus-Specific Cytotoxic T Lymphocytes from bm13 (H-2Db-Mutant) Mice. I. Full Recognition of Kbm4 by Kb-Restricted CTL

M. J. Stukart, J. Boes, and C. J. M. Melief 28 Recognition of H-2Kb Mutant Target Cells by Moloney Virus-Specific Cytotoxic T Lymphocytes from bm13 (H-2Db-Mutant) Mice. II. Relationship of Kbm4 and Kbm11 in Restriction Specificities and Allodeterminants

A. A. Czitrom, N. R. J. Gascoigne, S. Edwards, and D. J. Waterfield 33 Induction of Minor Alloantigen-Specific T Cell Subsets In Vivo: Recognition of Processed Antigen by Helper but not by Cytotoxic T Cell Precursors

D. T. Harris and R. P. Sekaly 40 Target Cell Susceptibility to Immune Lysis and Expression of MHC Antigens Are Independent of Position in the Cell Cycle

C. Carnaud, S. T. Ishizaka, and O. Stutman 45 Early Loss of Precursors of CTL and IL-2-Producing Cells in the Development of Neonatal Tolerance to Alloantigens

M. D. Minkowski, M. Castellazzi, and G. Buttin 52 Lack of Adenosine Deaminase Activity in Cultured Murine Cytotoxic T Lymphocytes

H. von Boehmer, P. Kisielow, W. Leiserson, and W. Haas 59 Lyt-2+ T Cell-Independent Functions of Lyt-2+ Cells Stimulated with Antigen or Concanavalin A

M. Adachi, J. Yodoi, N. Noro, T. Masuda, and H. Uchino 65 Murine IgA Binding Factors Produced by FcaR (+) T Cells: Role of FCyR (+) Cells for the Induction of FcaR and Formation of IgA-Binding Factor in Con A-Activated Cells

R. L. Deem and S. R. Targan 72 Evidence of a Dynamic Role of the Target Cell Membrane during the Early Stages of the Natural Killer Cell Lethal Hit

A. Finnegan, B. Needleman, and R. J. Hodes 78 Activation of B Cells by Autoreactive T Cells: Cloned Autoreactive T Cells Activate B Cells by Two Distinct Pathways

D. G. Osmond, F. Melchers, and C. J. Paige 86 Pre-B Cells in Mouse Bone Marrow: In Vitro Maturation of Peanut Agglutinin Binding B Lymphocyte Precursors Separated from Bone Marrow by Fluorescence-Activated Cell Sorting

M. Fultz, F. D. Finkelman, and J. J. Mond 91 In Vitro Administration of Anti-I-A Antibody Induces the Internalization of B Cell Surface I-A and I-E without Affecting the Expression of Surface Immunoglobulin

Continued on page 4
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Reduced Expression of Ia Antigens by Thymic Epithelial Cells of Aged Mice</td>
<td>A. G. Farr and C. L. Sidman</td>
</tr>
<tr>
<td>104</td>
<td>Suppression of the Immune Response to Listeria monocytogenes. 1. Immune Complexes Inhibit Resistance</td>
<td>H. W. Virgin IV and E. R. Un-</td>
</tr>
<tr>
<td>117</td>
<td>molecular mechanisms of lymphocyte extravasation. II. Studies of In Vitro lymphocyte adherence to high endothelial venules</td>
<td>B. A. Braaten, G. J. Spangrude, and R. A. Daynes</td>
</tr>
<tr>
<td></td>
<td>The Role of Tc Surface Molecules in the Activation of Human T Cells: A Two-Stimulus Requirement for IL 2 Production Reflects Events Occurring at a Pre-translational Level</td>
<td>J. P. Van Wauwe, J. G. Goossens, and P. C. L. Beverley</td>
</tr>
<tr>
<td></td>
<td>A Human Alloreactive Inducer T Cell Clone that Selectively Activates Antigen-Specific Suppressor T Cells</td>
<td>J. A. Brieva and R. H. Stevens</td>
</tr>
<tr>
<td>123</td>
<td>Specific Inhibition of In Vitro Lymphocyte Transformation by an Anti-Pan T Cell (gp67) Ricin a Chain Immunotoxin</td>
<td>R. L. Looney and G. N. Abraham</td>
</tr>
<tr>
<td>132</td>
<td>The Fc Portion of Intact IgG Blocks Stimulation of Human PBMC by Anti-T3</td>
<td>E. M. Schneider, G. P. Pawelec, S. LiangRu, and P. Wernet</td>
</tr>
<tr>
<td>137</td>
<td>Specific Inhibition of In Vitro Lymphocyte Transformation by an Anti-Pan T Cell (gp67) Ricin a Chain Immunotoxin</td>
<td>G. P. G. Miller and J. Puck</td>
</tr>
<tr>
<td>147</td>
<td>Human In Vivo Antigen-Induced Lymphoblastoid B Cells Are Capable of Cyclical Antibody Production In Vitro</td>
<td>M. Zouali, J.-M. Fine, and A. Eyquem</td>
</tr>
<tr>
<td>166</td>
<td>In Vitro Human Lymphocyte Responses to Cryptococcus neoformans: Evidence for Primary and Secondary Responses in Normals and Infected Subjects</td>
<td>M. A. Vadas, N. Nicola, A. F. Lopez, D. Metcalf, G. Johnson, and A. Pereira</td>
</tr>
<tr>
<td>173</td>
<td>A Novel Type of Human T Cell Clone with Highly Potent Natural Killer-Like Cytotoxicity Divorced from Large Granular Lymphocyte Morphology</td>
<td>F. M. Orson, V. De Seau, S. Pike, and R. M. Blaese</td>
</tr>
<tr>
<td>180</td>
<td>The Fc Receptor for IgG on Human Natural Killer Cells: Phenotypic, Functional, and Comparative Studies with Monoclonal Antibodies</td>
<td>L. J. Compton, A. D. Steinberg, and H. Sano</td>
</tr>
<tr>
<td>190</td>
<td>A Human Monoclonal IgG1, with Anti-Idiotypic Activity against Anti-Human Thyroglobulin Autoantibody</td>
<td>R. D. Inman, R. A. Rosenberg, P. B. Redecha, and C. L. Christian</td>
</tr>
<tr>
<td>195</td>
<td>T Cell Responses to the Major Allergen from the House Dust Mite Derma-tophagoides pteronyssinus. Antigen P1: Comparison of Patients with Asthma, Atopic Dermatitis, and Perennial Rhinitis</td>
<td>M. E. Gershwin, D. R. Lentz, R. S. Beach, and L. S. Hurley</td>
</tr>
</tbody>
</table>

Continued on page 5
Continued from page 4

B. Zakheim, E. McCafferty, S. M. Phillips, M. Clayman, and E. G. Neilson
M. Zanetti, J. Rogers, and D. H. Katz

Induction of Various Autoantibodies by Mutant Gene lpr in Several Strains of Mice

Murine Interstitial Nephritis. II. The Adoptive Transfer of Disease with Immune T Lymphocytes Produces a Phenotypically Complex Interstitial Lesion

Induction of Autoantibodies to Thyroglobulin by Anti-Idiotypic Antibodies

CYTOKINES • MEDIATORS • REGULATORY MOLECULES

H. S. Lillehoj, T. R. Malek, and E. M. Shevach
J. L. Butler, J. L. Ambrus, Jr., and A. S. Fauci
E. S. Kimball, S. F. Pickeral, J. J. Oppenheim, and J. L. Rosenberg
C-C Ting, S. S. Yang, and M. E. Hargrove
J. M. Curtinsinger and D. P. Fan
S. K. Arya, F. Wong-Staal, and R. C. Gallo
M. S. Pasternack, M. J. Bevan, and J. R. Klein
A. Biondi, J. A. Roach, S. F. Schlossman, and R. F. Todd
K. E. Wright, D. A. Clark, and W. E. Rawls
M. J. Wannemuehler, S. M. Michalek, E. Jirillo, S. I. Williamson, M. Hirasawa, and J. R. McGhee
H. E. Broxmeyer and E. Platzter

Differential Effect of Cyclosporin A on the Expression of T and B Lymphocyte Activation Antigens
Characterization of Monoclonal B Cell Growth Factor (BCGF) Produced by a Human T-T Hybridoma
Interleukin 1 Activity in Normal Human Urine
Induction of Suppressor T Cells by Interleukin 2
Interleukin 3 Augments the Murine Primary Cytolytic T Lymphocyte Response to Allogeneic Tumor Cells
Dexamethasone-Mediated Inhibition of Human T Cell Growth Factor and γ-Interferon Messenger RNA
Release of Discrete Interferons by Cytotoxic T Lymphocytes in Response to Immune and Nonimmune Stimuli
Phenotypic Characterization of Human T Lymphocyte Populations Producing Macrophage-Activating Factor (MAF) Lymphokines
Differences in Lymphocyte Responsiveness to Lymphokines in Two Inbred Strains of Syrian Hamster
Biochemical Comparison of Murine Colony-Stimulating Factors Secreted by a T Cell Lymphoma and a Myelomonocytic Leukemia
LPS Regulation of the Immune Response: Bacteroides Endotoxin Induces Mitogenic, Polyclonal, and Antibody Responses in Classical LPS Responsive but not C3H/HeJ Mice
Lactoferrin Acts on I-A and I-E/C Antigen Subpopulations of Mouse Peritoneal Macrophages in the Absence of T Lymphocytes and Other Cell Types to Inhibit Production of Granulocyte-Macrophage Colony Stimulatory Factors In Vitro

IMMUNOCHEMISTRY

S. Alexander, S. C. Hubbard, and J. L. Strominger
D. R. Sutherland, C. E. Rudd, and M. F. Greaves
C. G. Gahmberg and K. K. Karhi
M. R. Sher, T. P. Bender, and J. E. Niederhuber
F. Takei
R. S. Weeks, P. E. Mains, and C. H. Sibley

HLA-DR Antigens of Autologous Melanoma and B Lymphoblastoid Cell Lines: Differences in Glycosylation but not Protein Structure
The Antigen of Mature Human B Cells Detected by the Monoclonal Antibody FMC7: Studies on the Nature of the Antigen and Modulation of Its Expression
Isolation and Characterization of a Human T Lymphocyte-Associated Glycoprotein (gp40)
Association of Rh(D) Polypeptides with the Membrane Skeleton in Rh(D)-Positive Human Red Cells
Two Ia.17-Specific Monoclonal Antibodies Detect the Same Epitope but do not Share Idiotype
Mala-1: A Surface Antigen Expressed on Activated Murine T and B Lymphocytes
Comparison of Membrane IgM Expression in the Murine B Cell Lymphoma 70Z/3 Treated with LPS or Supernatant Containing T Cell Factors

Continued on page 6
Continued from page 5

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgE-Binding Factors from Mouse T Lymphocytes. II. Strain Differences in the Nature of IgE-Binding Factor</td>
<td>359</td>
</tr>
<tr>
<td>Preparation and Characterization of Monoclonal Antibodies Reactive with Porcine PBL</td>
<td>368</td>
</tr>
<tr>
<td>Noncovalent Association of Heavy and Light Chains in Rana catesbeiana Immunoglobulins</td>
<td>376</td>
</tr>
<tr>
<td>Antigenic Regions Defined by Monoclonal Antibodies Correspond to Structural Domains of Avian Lysozyme</td>
<td>384</td>
</tr>
<tr>
<td>Activation of the Alternative Complement Pathway by Isolated Human Glomerular Basement Membrane</td>
<td>394</td>
</tr>
<tr>
<td>Monoclonal Anti-Mouse Macrophage Antibodies Recognize the Globular Proteins of Clq, a Subcomponent of the First Component of Complement</td>
<td>400</td>
</tr>
<tr>
<td>Genetic Polymorphism of the Sixth Component (C6) of Rat Complement</td>
<td>405</td>
</tr>
<tr>
<td>Inhibition of Human Lymphocyte Natural Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity by K-76 COONa, a Reagent that Blocks Complement Activity</td>
<td>408</td>
</tr>
</tbody>
</table>

IMMUNOPHARMACOLOGY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organelle-Depleted Human Neutrophil Cytoplasts Used to Study FMET-LEU-PHE Receptor Modulation and Cell Function</td>
<td>415</td>
</tr>
</tbody>
</table>

MICROBIAL IMMUNOLOGY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cytotoxic T Cell Clones Directed against Herpes Simplex Virus-Infected Cells. I. Lysis Restricted by HLA Class II MB and DR Antigens</td>
<td>422</td>
</tr>
<tr>
<td>Control of Mouse Hepatitis Virus Replication in Macrophages by a Recessive Gene on Chromosome</td>
<td>428</td>
</tr>
<tr>
<td>Biology of Cloned Cytotoxic T Lymphocytes Specific for Lymphocytic Choriomeningitis Virus. I. Generation and Recognition of Virus Strains and H-2' Mutants</td>
<td>433</td>
</tr>
<tr>
<td>Production and Characterization of Species-Specific Monoclonal Antibodies against Leishmania donovani for Immunodiagnosis</td>
<td>440</td>
</tr>
<tr>
<td>Macrophage Activation to Kill Leishmania tropica: Characterization of a T Cell-Derived Factor that Suppresses Lymphokine-Induced Intracellular Destruction of Amastigotes</td>
<td>448</td>
</tr>
<tr>
<td>Susceptibility of Inbred Mice to Leishmania tropica Infection: Genetic Control of the Development of Cutaneous Lesions in P/J Mice</td>
<td>454</td>
</tr>
<tr>
<td>Fibronectin Enhances Macrophage Association with Invasive Forms of Trypanosoma cruzi</td>
<td>460</td>
</tr>
</tbody>
</table>

MOLECULAR BIOLOGY • MOLECULAR GENETICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the Immunoglobulin Heavy Chain Locus on Expression of the VK_{c3} Light Chain</td>
<td>465</td>
</tr>
<tr>
<td>Amino Acid and Nucleotide Sequences of Variable Regions of Mouse Immunoglobulin Light Chains of the (\lambda)-Subtype</td>
<td>471</td>
</tr>
</tbody>
</table>

Continued on page 7
TUMOR IMMUNOLOGY

Strategies for Production of Monoclonal Anti-Idiotype Antibodies against Human B Cell Lymphomas

495

A Helper Factor Needed for the Generation of Mouse Cytolytic T Lymphocytes Is Made by Tumor Cell Lines, Cloned T Cells, and Spleen Cells Exposed to a Variety of Stimuli

502

H. Fujisawa, H. Aoki, T. Yoshioka, S. Tomita, R. Ikegami, and T. Hamaoka

Establishment of Tumor-Specific Immunotherapy Model Utilizing TNF- Reactive Helper T Cell Activity and Its Application to the Autochthonous Tumor System

509

I. J. Fidler and A. J. Schroit

Synergism between Lymphokines and Muramyl Dipeptide Encapsulated in Liposomes: In Situ Activation of Macrophages and Therapy of Spontaneous Cancer Metastases

515

A. K. Lichtenstein, J. Kahler, J. Berek, and J. Zighelboim

Successful Immunotherapy with Intraperitoneal Corynebacterium parvum in a Murine Ovarian Cancer Model Is Associated with the Recruitment of Tumor-Lytic Neutrophils into the Peritoneal Cavity

519

J. L. Urban and H. Schreiber

Rescue of the Tumor-Specific Immune Response of Aged Mice In Vitro

527

Letter

535

Announcements

536

Author Index

538