133 (1)

J Immunol 1984; 133:1-535; ;
http://www.jimmunol.org/content/133/1.citation

This information is current as of July 28, 2017.

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Contents

COMMUNICATIONS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. C. Giles, C. K. Hurley, and J. D. Capra</td>
<td>1</td>
</tr>
<tr>
<td>E. S. Kleinerman and R. B. Herman</td>
<td>4</td>
</tr>
<tr>
<td>Z. K. Ballas</td>
<td>7</td>
</tr>
</tbody>
</table>

R. C. Giles, C. K. Hurley, and J. D. Capra
Primary Structural Variation among Serologically Indistinguishable DS Antigens: The MB3-Bearing Molecule in DR4 Cells Differs from the MB3-Bearing Molecule in DR5 Cells

E. S. Kleinerman and R. B. Herman
Tumoricidal Activity of Human Monocytes: Evidence for Cytolytic Function Distinct from that of NK Cells

Z. K. Ballas
The Use of 5-Azacytidine to Establish Constitutive Interleukin 2-Producing Clones of the EL-4 Thymoma

CELLULAR IMMUNOLOGY

<table>
<thead>
<tr>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. A. Harp, B. S. Davis, and S. J. Ewald</td>
<td>10</td>
</tr>
<tr>
<td>L. L. Perry, I. R. Williams, and S. DiRusso</td>
<td>16</td>
</tr>
<tr>
<td>M. J. Stukart, J. Boes, and C. J. M. Melief</td>
<td>24</td>
</tr>
<tr>
<td>M. J. Stukart, J. Boes, and C. J. M. Melief</td>
<td>28</td>
</tr>
<tr>
<td>A. A. Czitrom, N. R. J. Gascoigne, S. Edwards, and D. J. Waterfield</td>
<td>33</td>
</tr>
<tr>
<td>D. T. Harris and R. P. Sekaly</td>
<td>40</td>
</tr>
<tr>
<td>C. Carnda, S. T. Ishizaka, and O. Stutman</td>
<td>45</td>
</tr>
<tr>
<td>M. D. Minkowski, M. Castellazzi, and G. Buttin</td>
<td>52</td>
</tr>
<tr>
<td>H. von Bohemer, P. Kisielow, W. Leiserson, and W. Haas</td>
<td>59</td>
</tr>
<tr>
<td>M. Adachi, J. Yodoi, N. Noro, T. Masuda, and H. Uchino</td>
<td>65</td>
</tr>
<tr>
<td>R. L. Deem and S. R. Targan</td>
<td>72</td>
</tr>
<tr>
<td>A. Finnegan, B. Needleman, and R. J. Hodes</td>
<td>78</td>
</tr>
<tr>
<td>D. G. Osmond, F. Melchers, and C. J. Paige</td>
<td>86</td>
</tr>
<tr>
<td>M. Fultz, F. D. Finkelman, and J. J. Mond</td>
<td>91</td>
</tr>
</tbody>
</table>

J. A. Harp, B. S. Davis, and S. J. Ewald
Inhibition of T Cell Responses to Alloantigens and Polyclonal Mitogens by Ly-5 Antisera

L. L. Perry, I. R. Williams, and S. DiRusso
Suppressor T Cell Recognition of Major and Minor Histocompatibility Alloantigens: Selected Suppression of MHC-Directed Responses by Minor Alloantigen T

M. J. Stukart, J. Boes, and C. J. M. Melief
Recognition of H-2K^b Mutant Target Cells by Moloney Virus-Specific Cytotoxic T Lymphocytes from bm13 (H-2D^b-Mutant) Mice. I. Full Recognition of K^b_n by Kb-Restricted CTL

M. J. Stukart, J. Boes, and C. J. M. Melief
Recognition of H-2K^b Mutant Target Cells by Moloney Virus-Specific Cytotoxic T Lymphocytes from bm13 (H-2D^b-Mutant) Mice. II. Relationship of K^b_n and K^b_m in Restriction Specificities and Allodeterminants

A. A. Czitrom, N. R. J. Gascoigne, S. Edwards, and D. J. Waterfield
Induction of Minor Alloantigen-Specific T Cell Subsets In Vivo: Recognition of Processed Antigen by Helper but not by Cytotoxic T Cell Precursors

D. T. Harris and R. P. Sekaly
Target Cell Susceptibility to Immune Lysis and Expression of MHC Antigens Are Independent of Position in the Cell Cycle

C. Carnda, S. T. Ishizaka, and O. Stutman
Early Loss of Precursors of CTL and IL 2-Producing Cells in the Development of Neonatal Tolerance to Alloantigens

M. D. Minkowski, M. Castellazzi, and G. Buttin
Lack of Adenosine Deaminase Activity in Cultured Murine Cytotoxic T Lymphocytes

H. von Bohemer, P. Kisielow, W. Leiserson, and W. Haas
Lyt-2⁺ T Cell-Independent Functions of Lyt-2⁺ Cells Stimulated with Antigen or Concanavalin A

M. Adachi, J. Yodoi, N. Noro, T. Masuda, and H. Uchino
Murine IgA Binding Factors Produced by FcaR⁺ T Cells: Role of FCyR⁺ Cells for the Induction of FcaR and Formation of IgA-Binding Factor in Con A-Activated Cells

R. L. Deem and S. R. Targan
Evidence of a Dynamic Role of the Target Cell Membrane during the Early Stages of the Natural Killer Cell Lethal Hit

A. Finnegan, B. Needleman, and R. J. Hodes
Activation of B Cells by Autoreactive T Cells: Cloned Autoreactive T Cells Activate B Cells by Two Distinct Pathways

D. G. Osmond, F. Melchers, and C. J. Paige
Pre-B Cells in Mouse Bone Marrow: In Vitro Maturation of Peanut Agglutinin Binding B Lymphocyte Precursors Separated from Bone Marrow by Fluorescence-Activated Cell Sorting

M. Fultz, F. D. Finkelman, and J. J. Mond
In Vitro Administration of Anti-I-A Antibody Induces the Internalization of B Cell Surface I-A and I-E without Affecting the Expression of Surface Immunoglobulin

Continued on page 4
Continued from page 3

A. G. Farr and C. L. Sidman
H. W. Virgin IV and E. R. Un- 104 Suppression of the immune Response to Listeria monocytogenes. 1. Immune Complexes Inhibit Resistance
B. A. Braaten, G. J. Spangrude, and R. A. Daynes

CLINICAL IMMUNOLOGY • IMMUNOPATHOLOGY

A. Weiss, R. L. Wiskocil, and J. D. Stobo
J. P. Van Wauwe, J. G. Goossens, and P. C. L. Beverley
J. A. Breiva and R. H. Stevens
R. L. Looney and G. N. Abraham
G. P. G. Miller and J. Puck
E. M. Schneider, G. P. Pawelec, S. LiangRu, and P. Wernet
M. Zouali, J.-M. Fine, and A. Eyquem
F. M. Orson, V. De Seau, S. Pike, and R. M. Blaese
L. J. Compton, A. D. Steinberg, and H. Sano
M. E. Gershwin, D. R. Lenzt, R. S. Beach, and L. S. Hurley

Continued on page 5
Continued from page 4

B. Zakheim, E. McCafferty, S. M. Phillips, M. Clayman, and E. G. Neilson
M. Zanetti, J. Rogers, and D. H. Katz

Induction of Various Autoantibodies by Mutant Gene lpr in Several Strains of Mice

Induction of Autoantibodies to Thyroglobulin by Anti-Idiotype Antibodies

H. Yoshida, J. B. Roths, and E. D. Myrphy

B. Zakheim, E. McCafferty, S. M. Phillips, M. Clayman, and E. G. Neilson

M. Zanetti, J. Rogers, and D. H. Katz

B. Zakheim, E. McCafferty, S. M. Phillips, M. Clayman, and E. G. Neilson

M. Zanetti, J. Rogers, and D. H. Katz

Continued on page 6

S. Alexander, S. C. Hubbard, and J. L. Strominger
D. R. Sutherland, C. E. Rudd, and M. F. Greaves
C. G. Gahmberg and K. K. Karhi
M. R. Sher, T. P. Bender, and J. E. Niederhuber
F. Takei
R. S. Weeks, P. E. Mains, and C. H. Sibley

HLA-DR Antigens of Autologous Melanoma and B Lymphoblastoid Cell Lines: Differences in Glycosylation but not Protein Structure

The Antigen of Mature Human B Cells Detected by the Monoclonal Antibody FMC7: Studies on the Nature of the Antigen and Modulation of Its Expression

Isolation and Characterization of a Human T Lymphocyte-Associated Glycoprotein (gp40)

Association of Rh(D) Polypeptides with the Membrane Skeleton in Rh(D)-Positive Human Red Cells

Two Ia.17-Specific Monoclonal Antibodies Detect the Same Epitope but do not Share Idiotype

Mala-1: A Surface Antigen Expressed on Activated Murine T and B Lymphocytes

Comparison of Membrane IgM Expression in the Murine B Cell Lymphoma 702/3 Treated with LPS or Supernatant Containing T Cell Factors

Continued on page 6
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgE-Binding Factors from Mouse T Lymphocytes. II. Strain Differences in the Nature of IgE-Binding Factor</td>
<td>359</td>
</tr>
<tr>
<td>Preparation and Characterization of Monoclonal Antibodies Reactive with Porcine PBL</td>
<td>368</td>
</tr>
<tr>
<td>Noncovalent Association of Heavy and Light Chains in Rana catesbeiana Immunoglobulins</td>
<td>376</td>
</tr>
<tr>
<td>Antigenic Regions Defined by Monoclonal Antibodies Correspond to Structural Domains of Avian Lysozyme</td>
<td>384</td>
</tr>
<tr>
<td>Activation of the Alternative Complement Pathway by Isolated Human Glomerular Basement Membrane</td>
<td>394</td>
</tr>
<tr>
<td>Monoclonal Anti-Mouse Macrophage Antibodies Recognize the Globular Proteins of Clq, a Subcomponent of the First Component of Complement</td>
<td>400</td>
</tr>
<tr>
<td>Genetic Polymorphism of the Sixth Component (C6) of Rat Complement</td>
<td>405</td>
</tr>
<tr>
<td>Inhibition of Human Lymphocyte Natural Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity by K-76 COONa, a Reagent that Blocks Complement Activity</td>
<td>408</td>
</tr>
</tbody>
</table>

IMMUNOPHARMACOLOGY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organelle-Depleted Human Neutrophil Cytoplasts Used to Study FMET-LEU-PHE Receptor Modulation and Cell Function</td>
<td>415</td>
</tr>
</tbody>
</table>

MICROBIAL IMMUNOLOGY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cytotoxic T Cell Clones Directed against Herpes Simplex Virus-Infected Cells. I. Lysis Restricted by HLA Class II MB and DR Antigens</td>
<td>422</td>
</tr>
<tr>
<td>Control of Mouse Hepatitis Virus Replication in Macrophages by a Recessive Gene on Chromosome</td>
<td>428</td>
</tr>
<tr>
<td>Biology of Cloned Cytotoxic T Lymphocytes Specific for Lymphocytic Choriomeningitis Virus. I. Generation and Recognition of Virus Strains and H-2' Mutants</td>
<td>433</td>
</tr>
<tr>
<td>Production and Characterization of Species-Specific Monoclonal Antibodies against Leishmania donovani for Immunodiagnosis</td>
<td>440</td>
</tr>
<tr>
<td>Macrophage Activation to Kill Leishmania tropica: Characterization of a T Cell-Derived Factor that Suppresses Lymphokine-Induced Intracellular Destruction of Amastigotes</td>
<td>448</td>
</tr>
<tr>
<td>Susceptibility of Inbred Mice to Leishmania tropica Infection: Genetic Control of the Development of Cutaneous Lesions in P/J Mice</td>
<td>454</td>
</tr>
<tr>
<td>Fibronectin Enhances Macrophage Association with Invasive Forms of Trypanosoma cruzi</td>
<td>460</td>
</tr>
</tbody>
</table>

MOLECULAR BIOLOGY ♦ MOLECULAR GENETICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the Immunoglobulin Heavy Chain Locus on Expression of the VK,lambda Light Chain</td>
<td>465</td>
</tr>
<tr>
<td>Amino Acid and Nucleotide Sequences of Variable Regions of Mouse Immunoglobulin Light Chains of the lambda-Subtype</td>
<td>471</td>
</tr>
</tbody>
</table>

Continued on page 7
Continued from page 6

P. A. Ponte, M. Dean, V. H. Pepe, and G. E. Sonenshein 476 Overproduction of immunoglobulin mRNA by a Murine Myeloma MOPC 315 Variant Cell Line

D. Eilat, M. Hochberg, J. Pumphrey, and S. Rudikoff 489 Monoclonal Antibodies to DNA and RNA from NZB/NZW F1 Mice: Antigenic Specificities and NH2 Terminal Amino Acid Sequences

TUMOR IMMUNOLOGY

K. Thielemans, D. G. Maloney, T. Meeker, J. Fujimoto, C. Doss, R. A. Warnke, J. Bindl, J. Gralow, R. A. Miller, and R. Levy 495 Strategies for Production of Monoclonal Anti-Idiotype Antibodies against Human B Cell Lymphomas

H. Fujiwara, H. Aoki, T. Yoshio, S. Tomita, R. Ikekami, and T. Hamaoka 509 Establishment of Tumor-Specific Immunotherapy Model Utilizing TNP-Reactive Helper T Cell Activity and Its Application to the Autochthonous Tumor System

I. J. Fidler and A. J. Schroit 515 Synergism between Lymphokines and Muramyl Dipeptide Encapsulated in Liposomes: In Situ Activation of Macrophages and Therapy of Spontaneous Cancer Metastases

A. K. Lichtenstein, J. Kahler, J. Berek, and J. Zighelboim 519 Successful Immunotherapy with Intraperitoneal Corynebacterium parvum in a Murine Ovarian Cancer Model Is Associated with the Recruitment of Tumor-Lytic Neutrophils into the Peritoneal Cavity

J. L. Urban and H. Schreiber 527 Rescue of the Tumor-Specific Immune Response of Aged Mice In Vitro

Letter 535

Announcements 536

Author Index 538