This information is current as of July 15, 2017.

130 (5)

J Immunol 1983; 130:1997-2487; ;
http://www.jimmunol.org/content/130/5.citation

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Contents

COMMUNICATION

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. A. Parker and L. W. Schierman</td>
<td>2000</td>
<td>Suppression of Humoral Immunity in Chickens Prevents Transient Paralysis Caused by a Herpesvirus</td>
</tr>
<tr>
<td>D. Bellgrau and M. Zoller</td>
<td>2005</td>
<td>Cytotoxic T Lymphocyte Responses to Spontaneous Tumors: Immunogenicity Dependent on the Recognition of Processed Tumor Antigens</td>
</tr>
<tr>
<td>G. Schuler, J. Aubock, and J. Linert</td>
<td>2008</td>
<td>Enrichment of Epidermal Langerhans Cells by Immunoadsorption to Staphylococcus aureus Cells</td>
</tr>
<tr>
<td>J. L. Pace, S. W. Russell, B. A. Torres, H. M. Johnson, and P. W. Gray</td>
<td>2011</td>
<td>Recombinant Mouse γ Interferon Induces the Priming Step in Macrophage Activation for Tumor Cell Killing</td>
</tr>
</tbody>
</table>

CELLULAR IMMUNOLOGY

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Ono, L. J. Yaffe, J. L. Ryan, and A. Singer</td>
<td>2014</td>
<td>Functional Heterogeneity of the Lyb5⁺ B Cell Subpopulation: Mutant xid B Cells and Normal Lyb5⁺ B Cells Differ in Their Responsiveness to Phenol-Extracted Lipopolysaccharide</td>
</tr>
<tr>
<td>T. Saito-Taki and M. Nakano</td>
<td>2022</td>
<td>Suppression of Lipopolysaccharide-Induced Polyclonal B Cell Activation of Murine Spleen with Heat-Aggregated Murine Immunoglobulin G</td>
</tr>
<tr>
<td>T. Hamano and R. Asofsky</td>
<td>2027</td>
<td>Functional Studies on B Cell Hybridomas with B Cell Surface Antigens. I. Effects of Anti-immunoglobulin Antibodies on Proliferation and Differentiation</td>
</tr>
<tr>
<td>B. Subbarao and D. E. Mosier</td>
<td>2033</td>
<td>Induction of B Lymphocyte Proliferation by Monoclonal Anti-Lyb 2 Antibody</td>
</tr>
<tr>
<td>S. Jalkanen, K. Granfors, M. Jalkanen, and P. Toivanen</td>
<td>2038</td>
<td>Immune Capacity of the Chicken Bursectomized at 60 Hr of Incubation: Surface Immunoglobulin and B-L (Ia-like) Antigen-Bearing Cells</td>
</tr>
<tr>
<td>M. G. Goodman and W. O. Weigle</td>
<td>2042</td>
<td>T Cell-Replacing Activity of C8-Derivatized Guanine Ribonucleosides</td>
</tr>
<tr>
<td>A. K. Kimura and H. Wigzel</td>
<td>2056</td>
<td>Development and Function of Cytotoxic T Lymphocytes (CTL). I. In Vivo Maturation of CTL Precursors in the Absence of Detectable Proliferation Results as a Normal Consequence of Alloimmunization</td>
</tr>
<tr>
<td>R. P. Bucy and J. A. Kapp</td>
<td>2062</td>
<td>Ir Gene Control of Immune Responses to Insulins. II. Phenotypic Differences in T Cell Activity among Nonresponder Strains of Mice</td>
</tr>
<tr>
<td>A. B. Peck, R. T. Smith, and M. R. Jadus</td>
<td>2067</td>
<td>Heterogeneity of an Anti-H-2 I-A Response as Determined by Cloned T Cell Reactivity</td>
</tr>
<tr>
<td>P. J. Jensen</td>
<td>2071</td>
<td>The Involvement of Antigen-Presenting Cells and Suppressor Cells in the Ultraviolet Radiation-Induced Inhibition of Secondary Cytotoxic T Cell Sensitization Characterization of T Lymphocyte Subsets With Monoclonal Antibodies: Discovery of a Distinct Marker, Ly-m22, of T Suppressor Cells</td>
</tr>
</tbody>
</table>
| W. R. Thomas, G. Morahan, and J. F. A. P. Miller | 2079 | Continued on page 4
Continued from page 4

Activation of Cytotoxic T Lymphocytes Requires at Least Two Spleen Cell-Derived Helper Factors Besides Interleukin 2

W. Falk, D. N. Mannel, and W. Droge
P.-A. Guerne, P.-F. Piguet, and P. Vassali
B. S. Conta, M. B. Powell, and N. R. Korngold, K. J. Blank, and D. M. T. L. Delovitch, K. Kaufrnan, and R. H. Ruddle
Murasko
M. Gorczynski
J. S. Bromberg, T. L. Delovitch, K. Kaufman, and R. M. Gorczynski
J. S. Bromberg, T. L. Delovitch, K. Kaufman, and M. I. Greene
B. D.-M. Chen, H.-S. Lin, and S. Hsu
A. A. Wadee, D. Mendelsohn, and A. R. Rabson
A. A. Wadee and A. R. Rabson

IMMUNOCHEMISTRY

J. M. Kupinski, M. L. Plunkett, and J. H. Freed
P. L. Witte and J. W. Streilein
J. Caraux, B. Chichehian, B. Serrou, and W. O. Weigle
C. Wagener, B. R. Clark, K. J. Rickard, and J. E. Shively
C. Wagener, Y. H. Joy Yang, F. G. Crawford, and J. E. Shively

Human Soluble Fc γ-Binding Material. I. Immunochemical Properties of the Material Produced by the T Cell Line KE37
Monoclonal Antibodies to Hamster Class II MHC Molecules Distinguish T and B Cells
IA Mutant Functional Antigen-Presenting Cell Lines
Assignment of Antigenic Determinants to Separated I-Aγ Chains
Monoclonal Antibodies for Carcinoembryonic Antigen and Related Antigens as a Model System: Determination of Affinities and Specificities of Monoclonal Antibodies by Using Biotin-Labeled Antibodies and Avidin as Precipitating Agent in a Solution Phase Immunoassay
Monoclonal Antibodies for Carcinoembryonic Antigen and Related Antigens as a Model System: A Systematic Approach for the Determination of Epitope Specificities of Monoclonal Antibodies

IMMUNOPHARMACOLOGY

J. G. Bender, L. C. McPhail, and D. E. Van Epps
K. Cheung, A. C. Archibald, and M. F. Robinson
D. MacGlashan, Jr. and L. M. Lichtenstein
D. MacGlashan, Jr., M. Mogowski, and L. M. Lichtenstein
M. Dy and B. Lebel

Exposure of Human Neutrophils to Chemotactic Factors Potentiates Activation of the Respiratory Burst Enzyme
The Origin of Chemiluminescence Produced by Neutrophils Stimulated by Opsonized Zymosan
Studies of Antigen Binding on Human Basophils. I. Antigen Binding and Functional Consequences
Studies of Antigen Binding on Human Basophils. II. Continued Expression of Antigen-Specific IgE during Antigen-Induced Desensitization
Skin Allografts Generate an Enhanced Production of Histamine and Histamine-Producing Cell-Stimulating Factor (HCSF) by Spleen Cells in Response to T Cell Mitogens

Continued on page 6
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification in in situ Localization of the "Thymic Nurse Cell" in Man</td>
<td>2348</td>
</tr>
<tr>
<td>Inactivation of Human High Molecular Weight Kininogen by Human Mast Cell Tryptase</td>
<td>2352</td>
</tr>
<tr>
<td>Biochemical Analysis of Initial Triggering Events of IgE-Mediated Histamine Release from Human Lung Mast Cells</td>
<td>2357</td>
</tr>
</tbody>
</table>

MICROBIAL IMMUNOLOGY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Monoclonal Anti-gp70 Antibodies to Mimic the Effects of the Rfv-3 Gene in Mice with Friend Virus-Induced Leukemia</td>
<td>2363</td>
</tr>
<tr>
<td>An Antigen Cross-Reactive with gp52 of Mammary Tumor Virus is Expressed on a B Cell Subpopulation of Mice</td>
<td>2368</td>
</tr>
<tr>
<td>Viral Inhibition of Lymphocyte Mitogenesis: Interference with the Synthesis of Functionally Active T Cell Growth Factor (TCGF) Activity and Reversal of Inhibition by the Addition of Same</td>
<td>2372</td>
</tr>
<tr>
<td>The Recognition Specificity of a Murine Helper T Cell for Hemagglutinin of Influenza Virus A/PR/8/34</td>
<td>2379</td>
</tr>
<tr>
<td>Isolation and Characterization of a CNBr Cleavage Peptide of Influenza Viral Hemagglutinin Stimulatory for Mouse Cytolytic T Lymphocytes in High and Low Interferon-Producing Mice</td>
<td>2386</td>
</tr>
<tr>
<td>Interferon Production Appears to Predict Time of Recurrences of Herpes Labialis</td>
<td>2397</td>
</tr>
<tr>
<td>Immunologically Specific Direct T Lymphocyte-Mediated Killing of Nocardia asteroides</td>
<td>2401</td>
</tr>
<tr>
<td>Purification of a Major Membrane Protein of Toxoplasma gondii by Immunoabsorption with a Monoclonal Antibody</td>
<td>2407</td>
</tr>
<tr>
<td>Induction of Immune Responses by Schistosome Granuloma Macrophages</td>
<td>2413</td>
</tr>
</tbody>
</table>

MOLECULAR GENETICS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of a Defect in the H-2 Genes of SV40-Transformed C3H Fibroblasts That Do Not Express H-2K^*</td>
<td>2418</td>
</tr>
<tr>
<td>Ten Percent of Normal B Cells and Plasma Cells Share a V__ Determinant(s) (J606-GAC) with a Distinct Subset of Murine V__III Plasmacytomas</td>
<td>2423</td>
</tr>
<tr>
<td>Target Determinants for F__ Hybrid Anti-parental H-2d Cell-Mediated Lympholysis: Self Antigens Controlled by the D End</td>
<td>2429</td>
</tr>
<tr>
<td>A Common VH Marker Relating BALB/c α__1-3 Dextran-Binding and A/J__p-Azophenylarsonate-Binding Antibody Families</td>
<td>2434</td>
</tr>
</tbody>
</table>

TUMOR IMMUNOLOGY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Vitro Growth of B Lymphocytes Infiltrating Human Melanoma Tissue by Transformation with EBV: Evidence for Secretion of Anti-melanoma Antibodies by Some Transformed Cells</td>
<td>2442</td>
</tr>
<tr>
<td>Studies on the B-Lymphoblast Antigen No. 1 (BB-1) on a Series of Burkitt Lymphoma Lines Differing in the Expression of the EBV/C3 Receptor Complex</td>
<td>2448</td>
</tr>
<tr>
<td>Suppression and Elimination of BCL_1 Leukemia by Allogeneic Bone Marrow Transplantation</td>
<td>2452</td>
</tr>
<tr>
<td>Expression of Common Acute Lymphoblastic Leukemia Antigen (Calla) on Human Malignant Melanoma Cell Lines</td>
<td>2456</td>
</tr>
</tbody>
</table>

Continued on page 7
Independent Immunodominant and Immunorecessive Tumor-Specific Antigens on a Malignant Tumor: Antigenic Dissection with Cytolytic T Cell Clones

Sezary Syndrome. I. Specific Skin-Directed Migration of Peripheral Blood Lymphocytes

Striking Paucity of HLA-A, B, C and β2-Microglobulin on Human Neuroblastoma Cell Lines

Studies on the Mechanism of Natural Killer Cytotoxicity. II. Coculture of Human PBL with NK-Sensitive or Resistant Cell Lines Stimulates Release of Natural Killer Cytotoxic Factors (NKCF) Selectively Cytotoxic to NK-Sensitive Target Cells

Ultraviolet Radiation Inhibits Human Natural Killer Activity and Lymphocyte Proliferation

Announcements

Author Index