This information is current as of April 30, 2017.
Contents

COMMUNICATION

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Article Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. S. Finbloom and H. Metzger</td>
<td>1489</td>
<td>Isolation of Cross-Linked IgE-Receptor Complexes from Rat Macrophages</td>
</tr>
<tr>
<td>T. Y. Basham and T. C. Merigan</td>
<td>1492</td>
<td>Recombinant Interferon-γ Increases HLA-DR Synthesis and Expression</td>
</tr>
<tr>
<td>J. C. Fantone, W. A. Marasco, L. J. Elgas, and P. A. Ward</td>
<td>1495</td>
<td>Anti-inflammatory Effects of Prostaglandin E1: In Vivo Modulation of the Formyl Peptide Chemotactic Receptor on the Rat Neutrophil</td>
</tr>
<tr>
<td>Z. A. Nagy, C. N. Baxevanis, and J. Klein</td>
<td>1498</td>
<td>Cross-Reactivity of Suppressor T Cells Specific for Lactate Dehydrogenase B and IgG2a Myeloma Protein</td>
</tr>
<tr>
<td>G. Lopez-Berestein, K. Mehta, R. Mehta, R. L. Juliano, and E. M. Hersh</td>
<td>1500</td>
<td>The Activation of Human Monocytes by Liposome-Encapsulated Muramyl Dipeptide Analogues</td>
</tr>
<tr>
<td>R. H. Swanborg</td>
<td>1503</td>
<td>Autoimmune Effector Cells. V. A Monoclonal Antibody Specific for Rat Helper T Lymphocytes Inhibits Adoptive Transfer of Autoimmune Encephalomyelitis</td>
</tr>
</tbody>
</table>

CELLULAR IMMUNOLOGY

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Article Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. B. Levy and G. M. Shearer</td>
<td>1506</td>
<td>Cell-Mediated Lympholytic Responses against Autologous Cells Modified with Haptenic Sulphydryl Reagents. V. H-2Ld Self Products Are Recognized by Anti-AED-Specific Cytotoxic T Cells</td>
</tr>
<tr>
<td>R. F. Siliciano, R. Brookmeyer, and H. S. Shin</td>
<td>1512</td>
<td>The Diversity of T Cell Receptors Specific for Self MHC Gene Products</td>
</tr>
<tr>
<td>M.-L. Gougeon and J. Theze</td>
<td>1521</td>
<td>MHC-Linked Ir Gene Control of T Cell Responses: GAT-Specific Proliferating T Cells and Helper T Cells Are Elicited in Nonresponder Mice Immunized with Soluble GAT</td>
</tr>
<tr>
<td>R. A. Daynes, M. Emam, G. G. Krueger, and L. K. Roberts</td>
<td>1536</td>
<td>Expression of Ia Antigen on Epidermal Keratinocytes after the Grafting of Normal Skin to Nude Mice</td>
</tr>
<tr>
<td>A. Guimezanes and A.-M. Schmitt-Verhulst</td>
<td>1540</td>
<td>Anti-Lyt-1 Monoclonal Antibody Inhibits Induction of Anti-Self-TNP but Not of Alloreactive Cytotoxic T Lymphocytes</td>
</tr>
<tr>
<td>A. L. Glasebrook, A. Kelso, and H. R. MacDonald</td>
<td>1545</td>
<td>Cytolytic T Lymphocyte Clones That Proliferate Autonomously to Specific Alloantigenic Stimulation. II. Relationship of the Lyt-2 Molecular Complex to Cytolytic Activity, Proliferation, and Lymphokine Secretion</td>
</tr>
<tr>
<td>A. L. Glasebrook and H. R. MacDonald</td>
<td>1552</td>
<td>Monoclonal Anti-Lyt-2-Antibodies Block the Activation of Cytolytic T Lymphocyte Precursors</td>
</tr>
<tr>
<td>G. Strassman, F. H. Bach, and J. M. Zarling</td>
<td>1556</td>
<td>Depletion of Human NK Cells with Monoclonal Antibodies Allows the Generation of Cytotoxic T Lymphocytes without NK-Like Cells in Mixed Cultures</td>
</tr>
<tr>
<td>U. Hurtenbach and G. M. Shearer</td>
<td>1561</td>
<td>Analysis of Murine T Lymphocyte Markers during the Early Phase of GvH-Associated Suppression of Cytotoxic T Lymphocyte Responses</td>
</tr>
<tr>
<td>A. Hassner and A. Saxon</td>
<td>1567</td>
<td>Inhibition of Ongoing Myeloma IgE Synthesis in Vitro by Activated Human T Cells</td>
</tr>
<tr>
<td>R. D. Stout and M. Fisher</td>
<td>1580</td>
<td>Suppression of Lymphocyte Proliferative Responses: Demonstration of Two Stages Occurring in the in Vitro Generation of Suppressor Macrophages</td>
</tr>
<tr>
<td>L. A. Stingl, D. N. Sauder, M. Iijima, K. Wolff, H. Pehamberger, and G. Stingl</td>
<td>1586</td>
<td>Mechanism of UV-B-Induced Impairment of the Antigen-Presenting Capacity of Murine Epidermal Cells</td>
</tr>
<tr>
<td>J. H. Robinson</td>
<td>1592</td>
<td>The Ontogeny of Antigen-Presenting Cells in Fetal Thymus Evaluated by MLR Stimulation</td>
</tr>
<tr>
<td>K. Wright and I. A. Ramshaw</td>
<td>1596</td>
<td>A Requirement for Helper T Cells in the Induction of Delayed-Type Hypersensitivity</td>
</tr>
<tr>
<td>S. N. Rondinone, O. A. Giovanniello, H. A. Barrios, and N. R. Nota</td>
<td>1600</td>
<td>Effect of Fractional Cyclophosphamide Dosage on Sheep Red Blood Cell-Delayed-Type Hypersensitivity Response in Mice</td>
</tr>
<tr>
<td>M. E. Sunday and M. E. Dorf</td>
<td>1604</td>
<td>Anti-receptor Antibody-Induced H-Y-Specific Delayed-Type Hypersensitivity Responses in Nonresponder Mice</td>
</tr>
</tbody>
</table>

Continued on page 4
Continued from page 3

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Jyonouchi and P. W. Kincade</td>
<td>1616</td>
</tr>
<tr>
<td>N. Sacchi, G. Fiorini, P. Plevani, G. Badaracco, D. Breviario, and E. Ginelli</td>
<td>1622</td>
</tr>
<tr>
<td>E. Rothenberg and D. Triglia</td>
<td>1627</td>
</tr>
</tbody>
</table>

Continued on page 5

CLINICAL IMMUNOLOGY + IMMUNOPATHOLOGY

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. S. Geha</td>
<td>1634</td>
</tr>
<tr>
<td>L. D. Stein, C. J. Ledgley, and N. H. Sigal</td>
<td>1640</td>
</tr>
<tr>
<td>D. H. Boldt and S. A. Dorsey</td>
<td>1646</td>
</tr>
<tr>
<td>M. A. Keller, D. C. Heiner, R. M. Kidd, and A. S. Myers</td>
<td>1654</td>
</tr>
<tr>
<td>P. M. Mathews, C. J. Froelich, W. L. Sibbitt, Jr., and A. D. Bankhurst</td>
<td>1658</td>
</tr>
<tr>
<td>P. A. Fitzgerald, R. Evans, D. Kirkpatrick, and C. Lopez</td>
<td>1663</td>
</tr>
<tr>
<td>T. F. Tedder, D. T. Fearon, G. L. Gartland, and M. D. Cooper</td>
<td>1668</td>
</tr>
<tr>
<td>K. B. Pryzwansky, E. K. MacRae, and J. D. Lambris</td>
<td>1674</td>
</tr>
<tr>
<td>N. Fujii, T. Minagawa, A. Nakane, F. Kato, and S. Ohno</td>
<td>1683</td>
</tr>
<tr>
<td>J. M. Boggia, N. Samji, M. A. Moscarello, G. A. Hashim, and E. D. Day</td>
<td>1687</td>
</tr>
<tr>
<td>J. H. Berden, L. Hang, P. J. McConahey, and F. J. Dixon</td>
<td>1699</td>
</tr>
<tr>
<td>G. M. Kammer, R. E. Birch, and S. H. Polmar</td>
<td>1706</td>
</tr>
<tr>
<td>W. E. Seaman, D. Wofsy, J. S. Greenspan, and J. A. Ledbetter</td>
<td>1713</td>
</tr>
<tr>
<td>U. Kiesel, F. W. Falkenberg, and H. Kolb</td>
<td>1719</td>
</tr>
<tr>
<td>M. E. Elder and N. K. Maclaren</td>
<td>1723</td>
</tr>
<tr>
<td>R. D. Gutman, E. Colle, F. Michel, and T. Seemayer</td>
<td>1732</td>
</tr>
<tr>
<td>V. G. Cabana, H. Gewurz, and J. N. Siegel</td>
<td>1736</td>
</tr>
</tbody>
</table>

CYTOKINES + MEDIATORS + REGULATORY MOLECULES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Rao, S. B. Mizel, and H. Cantor</td>
<td>1743</td>
</tr>
<tr>
<td>R. A. Miller and O. Stutman</td>
<td>1749</td>
</tr>
<tr>
<td>J. S. Rosenberg, S. C. Gilman, and J. D. Feldman</td>
<td>1754</td>
</tr>
</tbody>
</table>

Continued on page 5
Continued from page 4

H. Akiyama, J.-I. Kumagai, and I. Yahara 1759 Analysis of Cellular Events Involved in T Cell Stimulation by Concanavalin A as a Function of Cell Concentration

C. G. Orosz, D. C. Roopenian, and F. H. Bach 1764 Phorbol Myristate Acetate and In Vitro T Lymphocyte Function. I. PMA May Contaminate Lymphokine Preparations and Can Interfere with Interleukin Biosassays

C. Walker, F. Kristensen, F. Betton, and A. L. deWeck 1770 Lymphokine Regulation of Activated (G0) Lymphocytes. I. Prostaglandin E2-Induced Inhibition of Interleukin 2 Production

S. N. Vogel, M. L. Hilfiker, and M. J. Caulfield 1774 Endotoxin-Induced T Lymphocyte Proliferation

J. R. Klein and M. J. Bevan 1780 Secretion of Immune Interferon and Generation of Cytotoxic T Cell Activity in Nude Mice Are Dependent on Interleukin 2: Age-Associated Endogenous Production of Interleukin 2 in Nude Mice

T. Kasahara, J. J. Hooks, S. F. Dougherty, and J. J. Oppenheim 1784 Interleukin 2-Mediated Immune Interferon (IFN-γ) Production by Human T Cells and T Cells Subsets

Y. M. Ooi, M. A. Weiss, A. Hsu, and B. S. Ooi 1790 Mechanisms of Suppression of Mouse Mesangial Cell Proliferation by Macrophage Supernatants

David H. Lovett, John L. Ryan, and R. Bernd Sterzel 1796 A Thymocyte-Activating Factor Derived from Glomerular Mesangial Cells

IMMUNOCHEMISTRY

F. Péterfy, P. Kuusela, and O. Makela 1609 Affinity Requirements for Antibody Assays Mapped by Monoclonal Antibodies

R. Lifshitz, R. N. Apté, and E. Mozes 1814 Cross-Reactive Idiotypic Determinants on Antibodies and Antigen-Specific Helper T Cell Continuous Lines

C. Victor, C. Bona, and B. Pernis 1819 Idiotypes on B Lymphocytes: Association with Immunoglobulins

A. Rifai and A. Mannik 1826 Clearance Kinetics and Fate of Mouse IgA Immune Complexes Prepared with Monomeric or Dimeric IgA

S. R. Carlsson and T. I. Stigbrand 1837 Alterations in Expression and Glycosylation Pattern of the Thy-1 Glycoprotein during Maturation and Transformation of Mouse T Lymphocytes

M. R. Meino, F. J. Dumont, R. C. Habbersett, and T. H. Hansen 1843 Expression of a Bone Marrow-Associated Ly-6 Determinant on the T Cell Population Expanding in the Lymph Nodes of the Autoimmune Mouse Strain MRL/Mp-lpr/lpr

J. S. Britz and G. W. Hart 1848 Biosynthesis of Glycosaminoglycans by Epithelial and Lymphocytic Components of Murine Thymus

M. S. Krangel, W. E. Biddison, and J. L. Strominger 1856 Comparative Structural Analysis of HLA-A2 Antigens Distinguishable by Cytotoxic T Lymphocytes. II. Variant DK1: Evidence for a Discrete CTL Recognition Region

S. F. Radka, C. Machamer, P. Cresswell, D. D. Kostyu, F. E. Ward, and D. B. Amos 1863 SFR3-DR5, a Monoclonal Antibody with HLA-DR5 Specificity

C-J. Liang-Takasaki, N. Grossman, and L. Leive 1867 Salmonellae Activate Complement Differentially via the Alternative Pathway Depending on the Structure of Their Lipopolysaccharide O-Antigen

S. Bordin, W. P. Kolb, and R. C. Page 1871 C1Q Receptors on Cultured Human Gingival Fibroblasts: Analysis of Binding Properties

K. Iida and V. Nussenzweig 1876 Functional Properties of Membrane-Associated Complement Receptor CR1

IMMUNOPHARMACOLOGY

R. E. Lemanske, Jr., K. Joiner, and M. Kaliner 1881 The Biologic Activity of Mast Cell Granules. IV. The Effect of Complement Depletion on Rat Cutaneous Late Phase Reactions

Continued on page 6
Continued from page 5

M. D. Tharp, R. T. Suvunrungrsi, and T. J. Sullivan

B. E. Seligmann, M. P. Fletcher, and J. I. Gallin

D. A. Bass, J. W. Parce, L. R. DeChatelet, P. Szejda, M. C. Seeds, and M. Thomas

H. E. Jasmin

S. R. Paterno, M. Costa, V. M. Lewis, and D. L. Peavy

F. Hirata and M. Iwata

M. Dy, E. Schneider, P. Mavier, P. Kamoun, B. Lebel, and J. Hamburger

MICROBIAL IMMUNOLOGY

R. C. Kennedy, K. Adler-Storthz, R. D. Henkel, and G. R. Dreesman

T. M. Trischmann

MOLECULAR GENETICS

S. M. Hedrick and R. H. Schwartz

V. T. Oi, L. A. Herzenberg, and B. K. Birshstein

TUMOR IMMUNOLOGY

W. Domzig, B. M. Stadler, and R. B. Herberman

M. J. Brunda, D. Taramelli, H. T. Holden, and L. Varesio

S. G. Kaminsky, I. Nakamura, and G. Cudkowicz

G. Klein, B. Ehlin-Henriksson, and S. F. Schlossman

LETTER TO THE EDITOR

C. R. Steinman, C. Morimoto, H. Sanjo, and A. D. Steinberg

Announcements

Erratum

Author Index