Contents

CELLULAR IMMUNOLOGY

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. R. StC. Sinclair and F. Y. Law</td>
<td>1439</td>
</tr>
<tr>
<td>K. Kärre and J. K. Seeley</td>
<td>1511</td>
</tr>
<tr>
<td>G. Janossy, F. J. Bollum, K. F. Bradstock, A. McMichael, N. Rapson, and M. F. Greaves</td>
<td>1525</td>
</tr>
<tr>
<td>D. Erard, J. Charreire, M. T. Aufredou, P. Galanaud, and J. F. Bach</td>
<td>1573</td>
</tr>
<tr>
<td>S. Gillis, G. R. Crabtree, and K. A. Smith</td>
<td>1624</td>
</tr>
<tr>
<td>S. Gillis, G. R. Crabtree, and K. A. Smith</td>
<td>1632</td>
</tr>
<tr>
<td>F. M. Graziano and P. W. Askenase</td>
<td>1645</td>
</tr>
<tr>
<td>Z. K. Ballas and C. S. Henney</td>
<td>1696</td>
</tr>
<tr>
<td>V. Rotter, Y. Yakir, and N. Trainin</td>
<td>1726</td>
</tr>
<tr>
<td>D. L. Rosenreith and S. B. Mizel</td>
<td>1749</td>
</tr>
<tr>
<td>O. Werdelin, O. Braendstrup, and E. M. Shevach</td>
<td>1755</td>
</tr>
<tr>
<td>N. Moriya, T. Nagaoki, N. Okuda, and N. Taniguchi</td>
<td>1795</td>
</tr>
<tr>
<td>V. Kumar, J. Ben-Ezra, M. Bennett, and G. Sonnenfeld</td>
<td>1832</td>
</tr>
<tr>
<td>M.-L. Lohmann-Matthes, W. Domzig, and J. Roder</td>
<td>1883</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. R. Balkwill and N. Hogg</td>
<td>1451</td>
</tr>
<tr>
<td>L. L. Thomas and L. M. Lichtenstein</td>
<td>1462</td>
</tr>
<tr>
<td>L. L. Thomas, S. R. Findlay, and L. M. Lichtenstein</td>
<td>1468</td>
</tr>
<tr>
<td>G. Marone, S. R. Findlay, and L. M. Lichtenstein</td>
<td>1473</td>
</tr>
<tr>
<td>S. Kishimoto, S. Tomino, H. Mitsuya, and H. Fujiwara</td>
<td>1586</td>
</tr>
<tr>
<td>J. R. Huddleston and M. B. A. Oldstone</td>
<td>1615</td>
</tr>
</tbody>
</table>

CLINICAL IMMUNOLOGY

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. R. Balkwill and N. Hogg</td>
<td>1451</td>
</tr>
<tr>
<td>L. L. Thomas and L. M. Lichtenstein</td>
<td>1462</td>
</tr>
<tr>
<td>L. L. Thomas, S. R. Findlay, and L. M. Lichtenstein</td>
<td>1468</td>
</tr>
<tr>
<td>G. Marone, S. R. Findlay, and L. M. Lichtenstein</td>
<td>1473</td>
</tr>
<tr>
<td>S. Kishimoto, S. Tomino, H. Mitsuya, and H. Fujiwara</td>
<td>1586</td>
</tr>
<tr>
<td>J. R. Huddleston and M. B. A. Oldstone</td>
<td>1615</td>
</tr>
</tbody>
</table>

Summary

- Antibody-Mediated Immunosuppression of a Cytotoxic Cell Response Not Involving a Simple Antigen-Masking Mechanism
- Cytotoxic Thy 1.2-Positive Blasts with NK-Like Target Selectivity in Murine Mixed Lymphocyte Cultures
- Terminal Transferase-Positive Human Bone Marrow Cells Exhibit the Antigenic Phenotype of Common Acute Lymphoblastic Leukemia
- Regulation of Contact Sensitivity to DNFB in the Mouse: Effects of Adult Thymectomy and Thymic Factor
K. Mercola and M. J. Cline 1721 A New Clonogenic Technique for Human Mitogen-Responsive T Cells
W. Borkowsky and H. S. Lawrence 1741 Effects of Human Leukocyte Dialysates Containing Transfer Factor in the Direct Leukocyte Migration Inhibition (LMI) Assay
P. M. Fiser and R. H. Buckley 1788 Human IgE Biosynthesis in Vitro: Studies with Atopic and Normal Blood Mononuclear Cells and Subpopulations
D. L. Edwards and F. P. Avis 1887 Antibody-Dependent Cellular Cytotoxicity Effector Cell Capability among Normal Individuals

IMMUNOCHEMISTRY

M. J. Brunda, P. Minden, and H. M. Grey 1457 Heterogeneity of Binding of Human IgA Subclasses to Protein A
C. Bona, J. J. Mond, K. E. Stein, S. House, R. Lieberman, and W. E. Paul 1484 Immune Response to Levan. III. The Capacity to Produce Anti-inulin Antibodies and Cross-Reactive Idiotypes Appears Late in Ontogeny
T. Yasuda, T. Tadakuma, C. W. Pierce, and S. C. Kinsky 1535 Primary in vitro Immunogenicity of Liposomal Model Membranes in Mouse Spleen Cell Cultures
D. W. Thomas, S. K. Meitz, Y. Hahn, and B. D. Schwartz 1565 Biologic Activity of Rabbit Antisera Directed against in vitro Stimulated Guinea Pig T Lymphocytes
A. Facchini, G. C. B. Astaldi, L. Cocco, P. Wijermans, F. A. Manzoli, and A. Astaldi 1577 Early Events in Thymocyte Activation. II. Changes in Nonhistone Chromatin Proteins Induced by a Thymus-Dependent Human Serum Factor

IMMUNOGENETICS AND TRANSPLANTATION

L. D. Fast and D. P. Fan 1491 Alloantigen Bound to Agarose Beads and Syngeneic Carrier Cells Are Capable of Stimulating Mouse Cytolytic T Lymphocytes in Vitro
A. B. Gottlieb, S. M. Fu, D. T. Y. Yu, C. Y. Wang, J. P. Halper, and H. G. Kunkel 1497 The Nature of the Stimulatory Cell in Human Allogeneic and Autologous MLC Reactions; Role of Isolated IgM-Bearing B Cells
K. Suzuki, C. G. Fatman, and T. B. Tomasi, Jr. 1530 Non-H-2 Linked Control of Low versus High Responses of Antigen-Induced Lymph Node Cell Proliferation: Possible Role for Antigen-Presenting Cells
J. L. T. Pelkonen, M. Kaartinen, K. Karjalainen, and O. Mäkelä 1558 A Hapten-Specific Ir Gene
M. A. Bean, M. Akiyama, Y. Kodera, B. Dupont, and J. A. Hansen 1610 Human Blood T Lymphocytes That Suppress the Mixed Leukocyte Culture Reactivity of Lymphocytes from HLA-B14 Bearing Individuals
J. J. Mond, E. Sehgal, D. H. Sachs, and W. E. Paul 1619 Expression of Ia Antigen on Adult and Neonatal B Lymphocytes Responsive to Thymus-Independent Antigens
C. E. Hayes and F. H. Bach 1678 Murine T Cell Ia Antigens. II. Further Studies on an I-J Subregion Specificity
D. E. Kipp, A. Furman, A. Miller, and E. E. Sercarz 1709 Delayed Advent of Stringent, Non-H-2 Genetic Regulation of the Antibody Response to a Protein Antigen
J. F. Burdick, P. S. Russell, and H. J. Winn 1732 Sensitivity of Long-Standing Xenografts of Rat Hearts to Humoral Antibodies

Continued on page 4
B. Malissen, D. Charmot, A. Lia-
beuf, and C. Mawas

P. Debre, S. Gisselbrecht, F. Pozo,
and J. P. Levy

B. Wolf, R. Urban, A. B. Miller, E.
S. Kimball, M. Mudgett, D.
Catty, and J. Daneman

1781 Expansion of Human Lymphocyte Populations Expressing Specific Immune Reac-
tivities. I. Differential Effects of Various Lectins on the Expression of Alloreactive
Cytotoxicity by Primed Cells

1806 Genetic Control of Sensitivity to Moloney Leukemia Virus in Mice. II. Mapping of
Three Resistant Genes within the H-2 Complex

1858 Nonallelic Inheritance of V region a Group Allotypes: Cell Surface and Serum
Studies in Double and Triple Expressing Rabbits

L. B. Schwartz, K. F. Austen, and
S. I. Wasserman

T. Kishimoto, H. Kikutani, Y. Nish-
izawa, N. Sakaguchi, and Y. Ya-
mamara

D. A. Kennerly, C. J. Secosan, C.
W. Parker, and T. J. Sullivan

Chou, and R. F. Kibler

Chou, and R. F. Kibler

D. S. Finbloom and P. H. Plotz

D. S. Finbloom and P. H. Plotz

R. A. Lewis, S. T. Holgate, L. J.
Roberts, II, J. F. Maguire, J. A.
Oates, and K. F. Austen

G. Marone, A. Kagey-Sobotka,
and L. M. Lichtenstein

E. C. Lawrence, F. Arnaud-Battan-
dier, I. R. Koski, N. J. Dooley,
A. V. Muchmore, and R. M.
Blaese

D. S. Linthicum, I. R. Mackay, and
P. R. Carnegie

V. Mehra, L. H. Mason, J. P. Fields,
and B. R. Bloom

S. L. Newman and R. B. Johnston,
Jr.

R. N. Pinckard, R. S. Farr, and D.
J. Hanahan

1445 Immunologic Release of β-Hexosaminidase and β-Glucuronidase from Purified Rat
Serosal Mast Cells

1504 Involvement of Anti-Ig-Activated Serine Protease in the Generation of Cytoplasmic
Factor(s) That Are Responsible for the Transmission of Ig-Receptor-Mediated
Signals

1519 Modulation of Stimulated Phospholipid Metabolism in Mast Cells by Pharmacologic
Agents That Increase Cyclic 3',5' Adenosine Monophosphate Levels

1540 The Immune Response of Lewis Rats to Peptide 68–88 of Guinea Pig Myelin Basic
Protein. I. T Cell Determinants

1544 The Immune Response of Lewis Rats to Peptide 68–88 of Guinea Pig Myelin Basic
Protein. II. B Cell Determinants

1594 Studies of Reticuloendothelial Function in the Mouse with Model Immune Com-
plexes. I. Serum Clearance and Tissue Uptake in Normal C3H Mice

1600 Studies of Reticuloendothelial Function in the Mouse with Model Immune Com-
plexes. II. Serum Clearance, Tissue Uptake, and Reticuloendothelial Saturation in NZB/W Mice

1663 Effects of Indomethacin on Cyclic Nucleotide Levels and Histamine Release from
Rat Serosal Mast Cells

1669 Effects of Arachidonic Acid and Its Metabolites on Antigen-Induced Histamine
Release from Human Basophils in Vitro

1767 Tissue Distribution of Immunoglobulin-Secreting Cells in Normal and IgA-Deficient
Chickens

1799 Measurement of Cell-Mediated Inflammation in Experimental Murine Autoimmune
Encephalomyelitis By Radioisotopic Labeling

1813 Lepromin-Induced Suppressor Cells in Patients with Leprosy

1839 Role of Binding Through C3b and IgG in Polymorphonuclear Neutrophil Function:
Studies with Trypsin-Generated C3b

1847 Physicochemical and Functional Identity of Rabbit Platelet-Activating Factor (PAF)
Released in Vivo during IgE Anaphylaxis with PAF Released in Vitro from IgE
Sensitized Basophils

O. Wescott, S. Dorsch, and B.
Roser

J. F. Kearney, A. Radbruch, B. Lie-
sengang, and K. Rajewsky

D. Zagury, J. Bernard, P. Jeannes-
son, N. Thierensse, and J. C.
Cerottini

K. Yamauchi, S. Fujimoto, and T.
Tada

R. I. Fox and I. L. Weissman

E. Fernandez-Cruz, B. Halliburton,
and J. D. Feldman

1478 Adoptive Immunotherapy of Leukemia in the Rat, without Graft-vs-Host Complica-
tions

1548 A New Mouse Myeloma Cell Line That Has Lost Immunoglobulin Expression but
Permits the Construction of Antibody-Secreting Hybrid Cell Lines

1604 Studies on the Mechanism of T Cell-Mediated Lysis at the Single Effector Cell
Level. I. Kinetic Analysis of Lethal Hits and Target Cell Lysis in Multicellular
Conjugates

1653 Differential Activation of Cytotoxic and Suppressor T Cells against Syngeneic
Tumors in the Mouse

1736 Absence of Unexpected H-2 Alloantigens on a Murine Lymphoma

1772 In Vivo Elimination by Specific Effector Cells of an Established Syngeneic Rat
Moloney Virus-Induced Sarcoma

Continued on page 5
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophil-Mediated Killing of Schistosomula of Schistosoma mansoni in Vitro: Synergistic Effect of Antibody and Complement</td>
<td>1431</td>
</tr>
<tr>
<td>Activation of Complement by Schistosoma mansoni Schistosomula: Killing of Parasites by the Alternative Pathway and Requirement of IgG for Classical Pathway Activation</td>
<td>1551</td>
</tr>
<tr>
<td>Modulation of the Host Response in Human Schistosomiasis. I. Adherent Suppressor Cells That Inhibit Lymphocyte Proliferative Responses to Parasite Antigens</td>
<td>1639</td>
</tr>
<tr>
<td>Antibody-Dependent Complement-Mediated Killing of Schistosomula in Intraperitoneal Diffusion Chambers in Mice</td>
<td>1659</td>
</tr>
<tr>
<td>M467: A Murine IgA Myeloma Protein That Binds a Bacterial Protein. I. Recognition of Common Antigenic Determinants on Salmonella Flagellins</td>
<td>1715</td>
</tr>
<tr>
<td>In Vitro Heterologous Cytotoxicity by T Effector Cells from Mice Immunized with Sindbis Virus</td>
<td>1763</td>
</tr>
<tr>
<td>Target Cell Heterogeneity in Murine Leukemia Virus Infection. I. Differences in Susceptibility to Infection with Friend Leukemia Virus between B Lymphocytes from Spleen, Bone Marrow, and Lymph Nodes</td>
<td>1822</td>
</tr>
<tr>
<td>Histocompatibility-Linked Susceptibility for Hepatosplenomegaly in Human Schistosomiasis Mansoni</td>
<td>1832</td>
</tr>
<tr>
<td>Inhibition of the in Vitro Growth of Plasmodium falciparum. I. The Effects of Immune Serum and Purified Immunoglobulin from Owl Monkeys</td>
<td>1894</td>
</tr>
<tr>
<td>Announcements</td>
<td>1900</td>
</tr>
<tr>
<td>Erratum</td>
<td>1902</td>
</tr>
<tr>
<td>Author Index</td>
<td>1903</td>
</tr>
</tbody>
</table>