AUTHOR INDEX

Abramsky, Oded, 225
Adachi, Toshihiro, 40
Aharonov, Aharon, 225
Albrecht, Paul, 208
Alvord, Ellsworth C., Jr., 110
Angellis, Dennis, 91
Askenase, Philip W., 216
Assimeh, S. N., 79
Auerbach, Robert, 151
Becker, Elmer L., 27
Berek, Claudia, 7
Berman-Goldman, Ruth, 16
Bienenstock, John, 73
Bishop, Nancy H., 191, 197
Black, Paul H., 11
Bloom, Barry R., 242
Boehm-Truitt, M., 168
Boetcher, David A., 246
Borsos, Tibor, 106
Boyle, Michael D. P., 106
Brandis, Henning, 253
Braungart, Dale, 130
Cannon, L. Edward, 160
Capra, J. Donald, 7
Cathou, Renata E., 180
Chakravarty, Ashim, 151
Chang, Chin-Hal, 91
Chen, Francis W., 160
Cioli, Donato, 59
Csako, Gyorgy, 304
Cullen, Susan E., 136
Czarnetzki, Beate M., 229, 235
David, John R., 323
Day, Richard P., 73
Dennert, Gunther, 59
deWeek, Alain L., 66
DeWitt, Charles W., 33
Doherty, Peter C., 187
Doyle, Theresa, 350
Dray, Sheldon, 124
Driscoll, Bernard F., 110
Dunlop, Malcolm B. C., 187
Eardley, Diane D., 313
Eaton, Gordon J., 319
Eaton, Linda, 48
Ellmann, Klaus, 7
Engers, Howard D., 52
Eskinazi, Daniel P., 124
Farrar, John J., 274
Fauci, Anthony S., 337
Frank, Michael M., 208
Frendorff, Asher, 343
Froese, Arnold, 269
Fuchs, Sara, 225
Fuller-Bonar, Janet, 274
Galant, Stanley P., 48
Geczy, Andrew F., 66
Geczy, Carolyn L., 66
Gershon, Richard K., 313
Gheridian, Beatriz, 11
Gilman-Sachs, Alice, 124
Goldblatt, Drora, 343
Gollogly, John R., 180
Granger, Gale A., 174
Haber, Edgar, 160
Hahn, Eckhart, 298
Hanna, Edgar E., 354
Hattori, Kenichi, 310
Hayashi, Hideo, 1
Hayden, Betty J., 216
Haynes, J. David, 216
Heymer, Berno, 23
Hicks, John T., 206
Hirsch, Martin S., 11
Hunninghake, Gary W., 337
Imai, Mitsunobu, 102
Ishizaka, Kimishige, 40, 84
Jeffers, Edward W. B., III, 174
Kahan, Melvyn, 16
Kano, Shogo, 242
Kaplan, Joel H., 115
Kells, D. I. C., 79
Kies, Marian W., 110
Kitao, Takeshi, 310
Knight, Katherine L., 124
König, Wolfgang, 229, 235
Koopman, W. J., 331
Krause, Richard M., 23
Kubal, Louis, 151
Kühner, Alice L., 323
Landahl, Carol A., 151
La Via, Mariano F., 155
Lee, Sheng-Chung, 283
Leonard, Edward J., 130, 246
Lichtenstein, Lawrence M., 84, 229, 235
Lucas, Zoltan J., 283
Lundak, Robert L., 48
MacDonald, H. Robson, 52
Margolies, Michael N., 160
Marvin, Stephanie, 259
Mayumi, Makoto, 102
Mergenhagen, S. E., 331
Metsger, W. James, 97
Miller, Edward J., 298
Miller, James N., 191, 197
Miyakawa, Yuzo, 102
Moav, Boaz, 343
Moav, Neomi, 343
Nakamura, Shuji, 1
Naor, David, 16
Newell, John, 160
Nowack, Hans, 298
Nowinski, Robert C., 350
Ohanian, Sarkis H., 106
Painter, R. H., 79
Parish, Christopher R., 187
Patterson, Roy, 97
Pierce, Carl W., 323
Pinteric, L., 79
Plata, Fernando, 52
Profitt, Max R., 11
Rahman, Adel A., 253
Ravis, William E., 73
Read, Stanley, 23
Rich, Robert R., 323
Roberts, Mary, 97
Roberts, Robert L., Jr., 155
Sale, George E., 143
Saltoun, Riat, 16
Sandberg, A. L., 331
Schleifer, Karl-Heinz, 23
Schlom, J., 168
Schochetman, G., 168
Schwartz, Benjamin D., 136
Sethi, Krishan K., 253
Shreffler, Donald C., 242
Slichter, Sherrill, 143
Small, Myra, 292
Smith, J. Bruce, 319
Sobotka, Anne K., 84
Storb, Rainer, 143
Storb, Urvula, 259
Strosberg, A. Donny, 160
Suba, Eva A., 304
Sulman, Miriam, 151
Suszko, Irena M., 97
Tadakuma, Takashi, 323
Takahashi, Kazuaki, 102
Takahashi, Takashi, 102
Takeshita, Masazumi, 310
Tarrab-Hazdai, Rebeca, 225
Teichner, Marion, 253
Timpl, Rupert, 298
Trainin, Nathan, 292
Trivers, Glennwood, 130
Tsuda, Fumio, 102
Unanue, Emil R., 27
Uzgiris, E. E., 115
Valentine, Martin D., 84
Wahl, S. M., 331
Walford, Roy L., 352
Warren, Reed P., 143
Weiden, Paul L., 143
Wick, Georg, 298
Williams, Phillip B. C., 33
Yiu, Suk Hing, 269
Yoshinaga, Masaru, 1
Zabriskie, John B., 23
Zinkernagel, Rolf M., 187

356
Workers in lipid or membrane research are becoming aware of liposomes as an important new tool. Formed spontaneously in certain lecithin-cholesterol solutions, liposomes are tight globular masses, many layers thick, that resemble membrane structures. Aqueous channels between the layers are widened by the mutually repellent action of electrically charged molecules introduced into the layers. The channels trap whatever ionic species was dissolved in the aqueous phase at their formation. Removal of any untrapped ions or markers by dialysis or gel filtration allows measuring the rate of leakage of sequestered ions.

Studies indicate liposomes are entirely analogous to cells and organelles in regard to ion flux. Also, liposomes are used to determine the modes of action of toxins, drugs, hormones and anaesthetics. Recently it was shown that lysosomes will take up some 50 times as much of an enzyme when it is trapped in liposomes than when it is “free”.

Each of the exclusive new Gibco kits makes enough liposomes for a limited period of work. The ingredients are supplied in sealed ampoules in exactly the proper proportions. There is no waste. One kit forms positively charged liposomes, one negative.

Positive Liposome Kit (POSL)
Catalog No. 800200
Reagent Content:
- egg lecithin* 63µmoles
- stearylamine 18µmoles
- cholesterol 9µmoles

Negative Liposome Kit (NEGL)
Catalog No. 800300
Reagent Content:
- egg lecithin* 63µmoles
- dicetyl phosphate 18µmoles
- cholesterol 9µmoles

*defined purity

Price List

<table>
<thead>
<tr>
<th>Code</th>
<th>Catalog No.</th>
<th>Unit Size</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSL</td>
<td>800200</td>
<td>Kit (6ml)</td>
<td>1-4 5-19 more</td>
</tr>
<tr>
<td>NEGL</td>
<td>800300</td>
<td>Kit (6ml)</td>
<td>10.00 9.50 9.00</td>
</tr>
</tbody>
</table>

(POSL and NEGL kits may be combined to make quantity prices)

References:

HYDROGENATED EGG LECITHIN PRICE
REDUCED TO $45.00 PER GRAM

Remarkable price reduction made possible by new batching process. Defined highest purity assured by thin-layer chromatography analysis. Suggested uses: as a lecithin standard, as a substrate for the enzymes phospholipase A₁, A₂, C, and D.

DEFINED-PURITY PHOSPHOLIPIDS

The Gibco catalogue lists 24 defined-purity phospholipids of absolutely unsurpassed quality. Detailed specifications are given. Also listed are 13 phospholipids of lesser pedigree, plus seven Coenzyme A derivatives of saturated and unsaturated fatty acids. Ask for your catalogue today.

THESE PRODUCTS ARE FOR INVESTIGATIVE PURPOSES ONLY—NOT FOR IN VITRO DIAGNOSTIC USE.

HETROL SLIDE TEST

DETECTION OF INFECTIOUS MONONUCLEOSIS ANTIBODIES

Hetrol Slide Test screens and confirms in one simple operation, differentiating Infectious Mononucleosis from other heterophile antibodies.
A presumptive test and a confirming test performed on the same slide at the same time detect the presence of Infectious Mononucleosis antibodies.
Hetrol test cells are stabilized suspensions ready-for-use.

Hetrol Slide Test eliminates preparation of fresh erythrocytes, and is comparable in specificity with differential tube tests.
Infectious Mononucleosis positive and negative controls are included to insure reliable results.
Hetrol Reagents are stable when stored at 2-10⁰ C.
Literature available on request.

DIFCO
DIFCO LABORATORIES Detroit Michigan USA