Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa.

M. Palazzo, S. Gariboldi, L. Zanobbio, S. Selleri, G. F. Dusio, V. Mauro, A. Rossini, A. Balsari and Cr. Rumio

*J Immunol* 2008; 181:7428; doi: 10.4049/jimmunol.181.10.7428

http://www.jimmunol.org/content/181/10/7428.1
Corrections


In Results, under the subhead titled *SGLT-1 activation blocks NF-κB nuclear translocation induced by LPS and CpG-ODN*, the corrected text in the fourth, fifth, and sixth sentences of the paragraph should read as follows: “In HT-29, LCC-18, and STC-1 cells stimulated with LPS or CpG-ODN, we observed activation of NF-κB, i.e., translocation to the nucleus, whereas this activation was not detected in cells pretreated with α-glucose (Fig. 6A) or 3-OMG (data not shown). NF-κB in the cytoplasm is complexed to members of the IκB family of inhibitory proteins. Western blot analysis revealed degradation of IκB when NF-κB translocates to the nucleus upon LPS or CpG-ODN stimulation; degradation of IκB in stimulated cells was inhibited by α-glucose (Fig. 6B) or 3-OMG (data not shown) pretreatment.”

In addition, changes have been made in Fig. 6 concerning the Western blots in B for LCC-18 and STC-1 and minor changes have also been made to the figure legend. Both the revised Fig. 6 and the revised legend are shown below.

---


Ref. 33 was not cited in Discussion. The text should read as follows: “In a study similar to the present study, Wang and colleagues showed that DCs genetically engineered to secrete dominant-negative TGF-β-R when pulsed with tumor lysate were more efficacious in generating an antitumor response compared with nonsecreting tumors in a mouse prostate adenocarcinoma model (33).”