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Effects of Vascular Endothelial Growth Factor on the
Lymphocyte-Endothelium Interactions: Identification

of Caveolin-1 and Nitric Oxide as Control Points
of Endothelial Cell Anergy’

Caroline Bouzin, Agnés Brouet, Joelle De Vriese, Julie DeWever, and Olivier Feron?

Tumors may evade immune responses at multiple levels, including through a defect in the lymphocyte-vessel wall interactions. The
angiogenic nature of endothelial cells (EC) lining tumor blood vessels may account for such anergy. In this study, we examined
whether mechanisms other than down-regulation of adhesion molecules could be involved, particularly signaling pathways de-
pendent on the caveolae platforms. To mimic the influence of the tumor microenvironment, EC were exposed to TNF-a and the
proangiogenic vascular endothelial growth factor (VEGF). We identified a dramatic inhibition of lymphocyte adhesion on acti-
vated EC following either short or long VEGF pretreatments. We further documented that VEGF did not influence the abundance
of major adhesion molecules, but was associated with a defect in ICAM-1 and VCAM-1 clustering at the EC surface. We also found
that overexpression of the caveolar structural protein, caveolin-1, overcame the VEGF-mediated inhibition of adhesion and
restored ICAM-1 clustering. Conversely, EC transduction with a caveolin-1 small interfering RNA reduced the TNF-a-dependent
increase in adhesion. Finally, we identified VEGF-induced NO production by the endothelial NO synthase as the main target
of the changes in caveolin-1 abundance. We found that the NO synthase inhibitor N-nitro-L-arginine methyl ester could
reverse the inhibitory effects of VEGF on lymphocyte adhesion and EC cytoskeleton rearrangement. Symmetrically, a NO
donor was shown to prevent the ICAM clustering-mediated lymphocyte adhesion, thereby recapitulating the effects of VEGF.
In conclusion, this study provides new insights on the mechanisms leading to the tumor EC anergy vs immune cells and opens
new perspectives for the use of antiangiogenic strategies as adjuvant approaches to cancer immunotherapy. The Journal of

Immunology, 2007, 178: 1505-1511.

he CD8" cytolytic T lymphocytes play crucial roles in

host defense against tumors (1, 2). Tumor cells may, how-

ever, evade immune responses at multiple levels within
the effector-target interaction (3). For instance, a deficiency in leu-
kocyte adhesion to the endothelium lining tumor blood vessels is
proposed as one possible mechanism of resistance to immunother-
apy (4). The tumor microenvironment and, more particularly, the
ongoing angiogenesis is very likely to account for the anergy of the
tumor vessel endothelium. Several studies have explored the im-
pact of angiogenic growth factors on the adhesion of a variety of
immune cells on cultured endothelial cells (EC)* (5-9). In most of
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these studies, a decrease in the expression of adhesion molecules
was identified as a major cause of the deficit in immune cell ad-
hesion to neoformed vessels. Such focus on the alterations in the
gene expression pattern, determined by key angiogenic cytokines,
such as the vascular endothelial growth factor (VEGF) (10), may
have led to underestimates of other mechanisms.

Two sets of independent studies suggest that the structural protein
of caveolae, caveolin-1, could be critical in regulating the adhesion
process at the signaling (vs gene expression) level. First, the role of
caveolae in transcellular migration was recently demonstrated in
studies identifying the association of caveolin-1 with structures
called transmigratory cups (11) or F-actin ring-rich channels
(12), which provide directional guidance to leukocytes for ex-
travasation. Second, caveolae are described as signaling plat-
forms concentrating key actors, including the VEGF receptor 2
(13, 14). We recently documented, by comparing the vascular
phenotype of wild-type and caveolin-1-deficient mice, the key
role of caveolae in regulating the activity of the endothelial NO
synthase (eNOS) in a model of VEGF-dependent postischemic
angiogenesis (14). In the line of the potential multiple down-
regulatory roles of VEGF on lymphocyte adhesion, one may,
therefore, ask whether caveolae might also influence the adhe-
sion process in tumor EC through direct caveolin-regulated sig-
naling pathways.

In this study, we aimed at identifying the potential effects of
VEGF on lymphocyte adhesion to activated EC, independent of
changes in the abundance of adhesion molecules. We also exam-
ined whether endogenous caveolin-1 was involved in such effects
and whether its molecular up- or down-regulation could influence
the process of adhesion on TNF-a-activated EC.
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Materials and Methods
Cell culture

HUVEC and dermal-derived human microvascular EC (HMVEC) were
purchased from Cambrex and were routinely cultured on 0.2% gelatin-
coated dishes in EGM and EGM-2MV (Cambrex), respectively. Jurkat T
cells were obtained from American Type Culture Collection and cultured
in 10% serum containing RPMI 1640 medium. In some experiments,
HMVEC were transfected with 1 ug of caveolin-1-encoding plasmid
(per 6-well dish) (14) or with 5 ug of caveolin-1 small interfering RNA
(siRNA; sequence: aagatgtgattgcagaaccag) using Lipofectin reagent
(Invitrogen Life Technologies) according to the manufacturer’s
protocol.

Lymphocyte isolation

Human CD8" T lymphocytes were prepared from blood buffy coats or
from healthy blood donors. Mononuclear cells were isolated by density
gradient centrifugation on a Histopaque-1077 gradient according to the
manufacturer’s protocol (Sigma-Aldrich). The CD8" cells were iso-
lated by MACS. Isolated CD8" cells were used immediately after iso-
lation. The purity of the positive fraction was confirmed by flow cy-
tometry and was >90%.

Adhesion assay

EC, grown to confluence on 12-well dishes, were stimulated for 4 h with
40 U/ml TNF-a (R&D Systems) before the addition of CD8* or Jurkat T
cells (10°ml). After 60 min of incubation at 37°C, unadhered cells were
removed by washing. Before stimulation, cells were treated with VEGF
(100 ng/ml; R&D Systems) for a short (30 min) or long (16 h) period. In
some experiments, cells were incubated for 1 h with 20 pg/ml blocking
Abs directed against ICAM-1 (clone BBI6-11; R&D Systems), VCAM-1
(clone 1.G11B1; BioSource International), E-selectin (clone BBIG-E4;
R&D Systems), or P-selectin (clone 9E1; R&D Systems) before the addi-
tion of immune cells. In other experiments, N-nitro-L-arginine methyl ester
(L-NAME, 5 mM) or diethylenetriamine NO (DETA-NO, 100 uM) were
added 30 or 15 min before VEGF treatment, respectively. The number of
adherent CD8™ cells was counted in three to four microscopic fields (0.5
mm?>/field).

Flow cytometry

Cells collected by brief exposure to trypsin were incubated for 20 min at
4°C with a fluorescein-conjugated anti-ICAM-1 mAb (clone BBIG-I1,
1/10 dilution; R&D Systems) or FITC-conjugated anti-VCAM-1 mAb
(clone 51-10C9, 1/5 dilution; BD Pharmingen). Negative controls were
cells incubated without Abs. Labeled cells were fixed in 1.25% parafor-
maldehyde, and fluorescence intensity was measured using a FACScan
apparatus (BD Biosciences) and was analyzed by the CellQuest software
(BD Biosciences).

Immunofluorescence microscopy

For ICAM-1 labeling, EC were cultured on gelatin-coated LabTek cham-
bers or coverslips and were stimulated following the same protocol as for
the adhesion assays. Cells were fixed with 4% paraformaldehyde/0.1%
glutaraldehyde in PBS for 20 min at room temperature. For the visualiza-
tion of ICAM-1 clustering, fixed cells were incubated with quenching
buffer (2% BSA/0.1 M glycine/PBS) at room temperature for 5 min and
then in blocking buffer (2% BSA/PBS) at 37°C for 30 min. Incubation with
a mouse monoclonal anti-human ICAM-1 Ab (1/100 dilution; Zymed Lab-
oratories) for 1 h at 37°C was followed by incubation with FITC-conju-
gated goat anti-mouse Abs (1/100 dilution; Jackson ImmunoResearch Lab-
oratories) for 30 min at room temperature. Both Abs were diluted in 1%
BSA/PBS to limit aspecific fixation. Cells were washed with PBS and
were mounted using a Vectashield reagent to help protect the fluores-
cence. Cells were visualized using a Zeiss Axiovert microscope
equipped for fluorescence and, in most experiments, using the MRC-
1024 confocal scanning laser imaging system (Bio-Rad). To evaluate
ICAM-1 and VCAM-1 clustering, the extent of specific fluorescence
(above a defined threshold) was quantified using image analysis soft-
ware. For the colabeling of ICAM-1 and caveolin-1, 0.3% Triton X-100
was added to each solution to permeabilize cells. Rabbit anti-caveolin-1
Abs (1/50 dilution; BD Pharmingen) were detected with tetramethyl-
rhodamine isothiocyanate anti-rabbit polyclonal Abs (1/300 dilution;
Jackson ImmunoResearch Laboratories). For actin stress fibers visual-
ization, HMVEC cultured on LabTek chambers were fixed with 4%
paraformaldehyde for 10 min. Cells were then permeabilized with 0.3%

Triton X-100 in PBS and incubated for 1 h with 2 pug/ml FITC-phal-
loidin (Sigma-Aldrich).

Immunoblotting and NO determination

Immunoblotting was performed on total cell extracts as previously de-
scribed (14, 15). Both caveolin-1 and eNOS Abs were from BD Pharm-
ingen. The amounts of NO derivatives (NOx) accumulated in the cell-
bathing medium for a fixed period of 8 h were evaluated using a
colorimetric assay (Roche Diagnostic Systems).

Real-time quantitative PCR

HUVEC preincubated with VEGF (100 ng/ml) for a short (30 min) or long
(16 h) period were stimulated with TNF-a (40 U/ml) for 90 min. Total
RNA was extracted using silica gel membranes (Qiagen), and cDNA was
synthesized using random hexamers and SuperScript Reverse Transcrip-
tase (Invitrogen Life Technologies). Real-time quantitative PCR analyses
were performed in triplicate using SYBR Green PCR Master Mix (Applied
Biosystems) and the following specific primers: human (h) ICAM-1 sense,
5'-GCCAGGAGACACTGCAGACA-3'; hICAM-1 antisense, 5'-TGGCT
TCGTCAGAATCACVGTT-3"; hVCAM-1 sense, 5'-TTTGGGAACGAA
CACTCTTACC-3"; hVCAM-1 antisense, 5'-CTTGACTGTGATCGGCT
TCC-3"; hRPLI19 sense, 5'-CAAGCGGATTCTCATGGAACA-3"; and
hRPL19 antisense, 5'-TGGTCAGCCAGGAGCTTCTT-3’. PCR fluores-
cence data were obtained and analyzed with the ABI PRISM 5700 system
instrument (Applied Biosystems). Ct (number of cycles needed to generate
a fluorescent signal above a predefined threshold) was determined for each
sample, and the relative mRNA expression, expressed as fold variation vs
the TNF-« condition, was calculated using the 27AAC formula after nor-
malization to RPL19 (ACt) and determination of the difference in Ct
(AACt) between the various conditions tested.

Statistics

Data are presented for convenience as mean = SE. Statistical analyses
were made using one sample ¢ test or one-way ANOVA with a Dunnett
test, where appropriate.

Results

VEGF reduces the adhesion of immune cells on activated
EC independently of changes in the expression of
adhesion molecules

We first compared the short- and long-term effects of VEGF on the
adhesion of immune cells on TNF-a-activated EC. Fig. 1A shows
that both 30-min and 16-h preincubations of EC with 100 ng/ml
VEGEF prevented the TNF-a-triggered adhesion of immune cells.
These observations were obtained in two different models com-
bining either HUVEC and Jurkat T cells (Fig. 1A) or HMVEC and
freshly isolated human CD8" T cells (Fig. 1B). We further docu-
mented that Abs directed against [ICAM-1 and VCAM-1 could
block 73 *£ 6% and 68 * 4%, respectively, of the attachment of
immune cells to TNF-a-treated EC (Fig. 1C), proving the direct
involvement of these adhesion molecules in our experimental
setup. By contrast, Abs directed against selectins only slightly in-
fluence the CD8™ T cell adhesion (Fig. 1C).

We then used real-time PCR and flow cytometry analyses to
determine whether changes in the expression of adhesion mole-
cules accounted for the observed reduction in adhesion. The AACt
analyses (see Materials and Methods) revealed that the TNF-«
exposure led to a dramatic increase in the mRNA expression of
the two adhesion molecules examined, namely, ICAM-1 and
VCAM-1 (Fig. 2A). When EC were preincubated with VEGF, a
lesser induction of the mRNA expression of both adhesion mole-
cules was observed (see Fig. 2A4). Flow cytometry analyses re-
vealed that for the 16-h preincubation with VEGF, but not the
30-min VEGF exposure, the observed changes in mRNA expres-
sion did translate into alteration in the expression of adhesion pro-
teins (Fig. 2B). Yet, the 16-h VEGF-dependent decrease in expres-
sion (e.g., mean fluorescence intensity) of ICAM-1 and VCAM-1
amounted to only 17 = 9% and 10 = 4%, respectively, whereas in
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FIGURE 1. TNF-o-induced adhesion of
lymphocytes on EC is prevented by VEGF and
largely dependent on ICAM-1 and VCAM-1.
Confluent HUVEC (A) and HMVEC (B)
monolayers were treated (or not) with VEGF
(100 ng/ml) for the indicated period of time (30
min or 16 h) before stimulation with TNF-«
(40 U/ml, 4 h). Adhesion of Jurkat cells or
CDS8™ T cells, respectively, was then evaluated
as described in Materials and Methods. In
some experiments, blocking Abs directed
against the indicated adhesion molecules were
used (C). The results (mean = SE) are derived
from the immune cell counting within three to
four microscopic fields in three separate exper-
iments and are expressed as percentage of the
adhesion in the presence of TNF-« (fixed at
100%); *, p < 0.05 and #**, p < 0.01.

the same experiment, the same long-term VEGF stimulus reduced

the adhesion by >75% (see Fig. 1A).

VEGF-dependent alteration in TNF-a-induced adhesion is

regulated by caveolin-1

To understand the reasons of the VEGF effects on lymphocyte
adhesion (independently of alterations in the expression of adhe-
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A ICAM-1 VCAM-1
5k P=0.06
125- 125+
__kk _kE
100 100
: : T
Z 751 T o FIRG —
g £
13 =
£ 504 g 50
£ ES
25 25
0-L . 0
VEGF - - 30min 16h VEGF - - 30min 16h
TNF-o - + + + TNF-a - o + ]
B
2 -
2 24
W8 ] control
is Ee — TNFa
‘-’§ 2 VEGF 30 min + TNFa
8 8
100 10! F‘Iﬁf.zc 107 1o a._ul' 10 :.léz 0% 107
2 2
§: z control
fe fo — TNFu
Sl 3g VEGF 16h + TNFa.
b ]
1-00 10! FIII:: D; 10! 10° 10?

ICAM-1 -

FITe

- VCAM-1

reveal any staining over background (data not shown). Inter-
estingly, following a short (30 min) pre-exposure to VEGF,

FIGURE 2. VEGF treatment marginally influ-
ences the induction of ICAM-1 and VCAM-1 ex-
pression by TNF-a. Confluent HUVEC monolay-
ers were (or were not) treated with VEGF (100
ng/ml) for the indicated period of time (30 min or
16 h) before stimulation with TNF-a (40 U/ml).
Expression of ICAM-1 (left) and VCAM-1 (right)
was then determined at the mRNA level using RT-
PCR (A) and at the protein level using flow cytom-
etry (B). The results in A (mean *= SE) are ex-
pressed as a percentage of the mRNA transcript
expression level in the presence of TNF-« (fixed at
100%); #*, p < 0.01, n = 3. The data presented in
B (surface expression of cell adhesion molecule)
are representative of three different experiments.
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FIGURE 3. VEGF treatment alters the TNF-a-induced ICAM-1 clustering in EC. HUVEC (cultured on LabTek) were treated (or not) with VEGF (100
ng/ml) for the indicated period of time (30 min or 16 h) before stimulation with TNF-« (40 U/ml, 4 h). A, Representative micrographs (of five independent
experiments) of ICAM-1 immunodetection using confocal microscopy (scale bar, 10 wm). B, Quantification of the effects of VEGF 30 min on the
ICAM-1 clustering. Representative high magnification confocal images (scale bar, 1 um) and quantification from 10 to 20 fields per experiment are

presented (x*, p < 0.01, n = 3).

ICAM-1 clustering in response to TNF-o stimulation was
barely detectable; the staining appeared more diffuse and con-
sistently presented a perinuclear localization (Fig. 3A, middle
panels). A similar pattern of ICAM-1 distribution was observed
following longer (16 h) VEGF treatment (Fig. 3A, right panels).
Higher magnification of confocal microscopy images confirmed
the deficit in the formation of large ICAM-1 clusters when cells
were pre-exposed to VEGF (see Fig. 3B); quantification was
performed by comparing the number of discrete spots that
reached a defined threshold of fluorescence intensity (Fig. 3B).
Similar experiments were designed to study the potential effect
of VEGF on VCAM-1 clustering; a trend toward an ~25% de-
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shown). The low signal-to-noise ratio of the VCAM-1 immu-
nofluorescent signal led us to focus on the sole ICAM-1 clus-
tering in the rest of our study.
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chose to study the potential role of caveolin-1, the structural
protein of caveolae, in controlling the inhibitory effects of
VEGF on lymphocyte adhesion. We transfected HMVEC with
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cell permeabilization; higher magnification reveals some extent of perinuclear costaining, but a complete lack of colocalization in other cell areas. Scale
bar, 10 wm. B, The effect of caveolin-1 overexpression in EC (same as in Fig. 4B) on VEGF-stimulated eNOS activity was compared with the effects of
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lymphocyte counting within three to four microscopic fields in three separate experiments and are expressed as percentage of the adhesion in the presence

of TNF-« (fixed at 100%); **, p < 0.01.

either a caveolin-1 siRNA or a caveolin-1-encoding plasmid
and evaluated the ability of CD8™ T cells to adhere to the trans-
duced cells. As presented in Fig. 4A, the extent of the siRNA-
mediated down-regulation of caveolin-1 amounted to ~90%
and was associated with a 45 * 5% inhibition of the TNF-«a-
induced adhesion. Similar data were obtained with a second
caveolin-1 siRNA, but not with a siRNA with one nucleotide
mismatched, which was unable to silence caveolin-1 expression
(data not shown). By contrast, overexpression of caveolin-1 in
HMVEC enhanced the basal adhesion of CD8™ T cells (see Fig.
4B); changes in ICAM-1/VCAM-1 clustering were, however,
not detectable in these basal conditions considering the low
absolute levels of the adhesion molecules in the absence of
TNF-a stimulation. We then tested the ability of caveolin-1
transfection to correct the inhibitory effects of VEGF on TNF-
a-stimulated adhesion. Overexpression of caveolin-1 restored
normal TNF-a-induced adhesion levels in the two conditions
tested (e.g., after short- and long-term VEGF preincubations,
Fig. 4C). Furthermore, a net increase in ICAM-1 clustering was
concomitantly authenticated in the presence of recombinant
caveolin-1 expression (+61 = 27% vs TNF plus VEGF condi-
tions; p < 0.05).

NO mediates the VEGF-induced anergy of EC vs
immune cells

Because of the apparent key role of caveolin-1 in regulating CD8*
T cell adhesion, we next examined the possible clustering of

ICAM-1 with native caveolin-1 after TNF-a stimulation. How-
ever, we failed to detect a major colocalization of endogenous
caveolin-1 and ICAM-1 in our experimental setup (Fig. 5A). We
then postulated that caveolin-1 played a role in adhesion
through downstream effectors instead of (or in addition to) reg-
ulating the compartmentation of proteins involved in leukocyte
transmigration. The known inhibitory interaction between
caveolin-1 and eNOS (19), and the well-characterized anti-
inflammatory properties of NO (20), led us to hypothesize that
VEGF could alter the T cell adhesion in a caveolin/eNOS axis-
dependent manner.

Accordingly, we found that caveolin-1 overexpression re-
duced NOx production to the same extent as the NO synthase
(NOS) inhibitor L-NAME (Fig. 5B). Also, L-NAME treatment
appeared to prevent the reduction in adhesion observed follow-
ing VEGF stimulation (Fig. 5C). To further establish in our
experimental setup, the link between NO and the VEGF-in-
duced cytoskeletal alterations (known to govern adhesion mol-
ecule clustering), we examined the effects of L-NAME on the
polymerization of actin fibers. Using the FITC-phalloidin-la-
beling technique, we validated that the NOS inhibitor signifi-
cantly prevented the actin fiber reorganization observed upon
VEGF stimulation (Fig. 5D).

Finally, to support the role of NO in this process, we examined
the effect of a NO donor in our experimental adhesion model. We
found that DETA-NO inhibited both the TNF-a-induced adhesion
(Fig. 6A) and ICAM-1 clustering (Fig. 6B).
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FIGURE 6. NO donor inhibits lymphocyte adhesion and ICAM-1 clus-
tering. Confluent HUVEC monolayers were (or were not) treated with
DETA-NO (100 uM) 15 min before TNF-a exposure (40 U/ml, 4 h). A,
Adhesion of Jurkat T cells was then evaluated. The results (mean * SE) are
derived from the immune cell counting within three to four microscopic
fields and are expressed as percentage of the adhesion in the presence of
TNF-« (fixed at 100%). B, Quantification (mean = SEM) of the ICAM-1
clustering after the DETA-NO exposure; 10—20 high-magnification con-
focal micrographs were considered per condition and quantification was
performed as described in Fig. 3B. =, p < 0.01.

Discussion

Tumor angiogenesis is known to be associated with a defect in
lymphocyte recruitment via a decrease in the expression of adhe-
sion molecules, and particularly ICAM-1 (4, 6, 9). The recently
identified roles of caveolae in both the regulation of angiogenesis
(13, 14, 19, 21) and the transmigration of lymphocytes (11, 12),
however, suggest other mechanisms to account for the anergy of
EC lining tumor blood vessels. In this study, we have now docu-
mented that 1) the proangiogenic growth factor VEGF can reduce
the adhesive capacity of immune cells to activated EC independent
of changes in the abundance of adhesion molecules through the
alteration of the adhesion molecule clustering process and 2) the
role of caveolin-1 in the lymphocyte recruitment process is not
restricted to its structural participation to the transcytotic channel,
but also involves the modulation of NO-dependent signaling in the
initial adhesion process.

The effects of VEGF on the immune cell recruitment process is
complex, with different studies reporting the stimulation or the
inhibition of the adhesion to EC or both (5, 6, 22-24). However, if
one considers conditions where EC are activated (e.g., pre-exposed
to proinflammatory cytokines), the consensual view is that angio-
genic cytokines impair immune cell adhesion. For instance, Griffioen
et al. (5) documented a reduced expression of adhesion mole-
cules after 3-day treatments of TNF-a-stimulated HUVEC with
basic fibroblast growth factor or VEGF. Similarly, we observed a
reduced induction of ICAM-1 and VCAM-1 mRNA transcripts by
TNF-« in the presence of VEGF. Such effects were detectable as
early as 2 h after VEGF addition, indicating the rapid modification
of the gene expression pattern associated to this angiogenic growth

factor. However, after a 16-h VEGF treatment, the protein expres-
sion levels of VCAM-1 and ICAM-1 were still barely altered,
whereas a dramatic inhibition of CD8* lymphocytes adhesion was
observed. Our confocal analysis revealed that this inhibitory effect
on adhesion (also detectable after short VEGF treatment) was as-
sociated to a perturbation of the spatial organization of ICAM-1
(and, to a lesser extent, of VCAM-1) at the endothelial surface.
Clustering of ICAM-1 was indeed prevented by VEGF, probably
through an effect on NO-dependent actin fiber reorganization (see
Fig. 5). It is worth noting that a similar scenario was recently
reported for atorvastatin (25) that decreased adhesion of mono-
cytes on TNF-a-activated HUVECS through an alteration of the
clustering of adhesion molecules despite an increased expression
of surface expression.

It is well established that activated adhesion molecules are trans-
located to rafts or cytoskeletal-associated, detergent-insoluble
membranes (16—18) in response to proinflammatory cytokines.
The cardinal importance of this early process was recently ac-
knowledged by the identification of a subclass of rafts, namely,
caveolae, as critical actors in the structure of the transmigratory
channels (11, 12). In this study, we showed that caveolin-1, the
structural protein of caveolae, directly influenced the adhesion pro-
cess. Yet, although the caveolin-1 overexpression was found to
restore ICAM-1 clustering and immune cell adhesion, we did not
observe a clear colocalization of ICAM-1 and caveolin-1 in our
experiments. Although subtle changes in the compartmentation of
adhesion molecules into caveolae structures cannot be excluded,
our data identified another reason for the exquisite relationship
between caveolin-1 abundance and adhesion. We provide evidence
that the key modulator of immune cell adhesion is NO, the pro-
duction of which is stimulated in the presence of VEGF. Caveo-
lin-1 acts, in this study as previously documented (15, 26), as a
competitive inhibitor of eNOS. Hence, we showed that an artificial
increase in caveolin-1 expression could prevent the NO production
observed in response to VEGF, and thereby restored a normal ad-
hesion of lymphocytes to TNF-a-activated EC. Inversely, a NO
donor was shown to mimic the potentiation of eNOS activation by
caveolin-1 down-regulation and to consecutively reduce immune
cell adhesion.

Interestingly, changes in caveolin-1 abundance are reported in
certain pathological conditions, which reinforces the paradigm that
we have established in this study by using genetic means of alter-
ing caveolin-1 expression (i.e., caveolin-1 siRNA or encoding
plasmid). For instance, caveolin-1 expression was found to be
down-regulated in cultured EC exposed to angiogenic growth fac-
tors (27) and in vivo in the tumor microvasculature (vs vessels
from healthy tissues) (28). In our laboratory, we also recently doc-
umented that angiogenesis is stimulated in tumors established in
caveolin-deficient animals and that hypoxia, as encountered in tu-
mors, rapidly leads to a reduction in caveolin-1 expression in EC
(data not shown). The very high rate of tumor growth in the xeno-
graft model (i.e., B16 melanoma) used in caveolin-deficient mice,
however, precluded any dissection of the immune cell recruitment
process and/or of a direct effect on tumor growth. Yet, these data
reinforce the paradigm of the NO-mediated anergy of angiogenic
EC induced by caveolin-1 down-regulation and emphasize that
caveolin-1 could be a possible target to reverse such phenomenon.

We, and others, have previously documented that increasing the
inhibitory effect of caveolin-1 on tumor angiogenesis by in vivo
lipofection of caveolin-1 ¢cDNA (15) or i.p. administration of
caveolin-1-derived peptides (21) was an achievable therapeutic
goal. Further studies are needed to explore whether such caveolin-
targeting approaches or, more generally, antiangiogenic strategies
may increase the clinical efficacy of cancer immunotherapy.
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